

PROHLÁŠENÍ O VLASTNOSTECH **DoP Nr. MKT-161** -cz

- 1. Jedinečný identifikační kód typu výrobku: MKT Highload Anchor SLZ
- 2. Typ, série nebo sériové číslo nebo jakýkoli jiný prvek umožňující identifikaci stavebních výrobků podle čl. 11 odst. 4:

ETA-09/0342, Annex A2 Číslo šarže: viz obal výrobku

3. Zamýšlené použití nebo zamýšlená použití stavebního výrobku v souladu s příslušnou harmonizovanou technickou specifikací podle předpokladu výrobce:

Obecný typ	Ocelová expanzní kotva s kontrolovaným utahovacím momentem (pouzdrový typ)				
Použití	Trhlinový a netrhlinový beton C20/25 - C50/60 (EN 206)				
Úroveň	1				
Zatížení	Statické a kvazi-statické				
Materiál	Pozinkovaná ocel: Pouze pro suché vnitřní prostředí Rozměrová řada: SLZ-S (14 M10) SLZ-B (14 M10)				
Teplotní rozsah (pokud to je relevantní)					

4. Jméno, firma nebo registrovaná obchodní známka a kontaktní adresa výrobce podle čl. 11 odst. 5:

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 D - 67685 Weilerbach

- 5. Případně jméno a kontaktní adresa zplnomocněného zástupce, jehož plná moc se vztahuje na úkoly uvedené v čl. 12 odst. 2: --
- 6. Systém nebo systémy posuzování a ověřování stálosti vlastností stavebních výrobků, jak je uvedeno v příloze V: Systém 1
- 7. V případě prohlášení o vlastnostech týkajících se stavebního výrobku, na který se vztahuje harmonizovaná norma:

-1-

01.03.2018

8. V případě prohlášení o vlastnostech týkajících se stavebního výrobku, pro který bylo vydáno evropské technické posouzení:

Deutsches Institut für Bautechnik, Berlin

vydal

ETA-09/0342

na základě

EAD 330232-00-0601

Oznámený subjekt 1343-CPR provedl podle systému 1:

- i) určení typu výrobku na základě zkoušky typu (včetně odběru vzorků), výpočtu pro typ, tabulkových hodnot nebo popisné dokumentace výrobku
- ii) počáteční inspekce ve výrobním závodě a řízení výroby
- iii) průběžného dozoru, posouzení a hodnocení řízení výroby

Na základě:

Osvědčení o stálosti vlastností 1343-CPR-M550-23/08.14

9. Deklarované vlastnosti:

Základní charakteristiky	Návrhová metoda	Provedení	Harmonizovaná technická specifikace	
Charakteristická únosnost pro tahové napětí	FprEN 1992-4 & TR 055	Annex C1		
Charakteristická únosnost pro smykové napětí	FprEN 1992-4 & TR 055	Annex C2	EAD 330232-00-0601	
Posun kotvy při mezních stavech	FprEN 1992-4 & TR 055	Annex C1 & C2		
Charakteristická únosnost za požáru	FprEN 1992-4 & TR 055	Annex C3		

Pokud byla použita podle článku 37 nebo 38 specifická technická dokumentace, požadavky, které výrobek splňuje: --

10. Vlastnost výrobku uvedená v bodě 1 a 2 je ve shodě s vlastností uvedenou v bodě 9.

Toto prohlášení o vlastnostech se vydává na výhradní odpovědnost výrobce uvedeného v bodě 4.

Podepsáno za výrobce a jeho jménem:

Stefan Weustenhagen (Managing Director)

Weilerbach, 01.03.2018

Dipl.-Ing. Detlef Bigalke
(Head of product development)

i.V. Rujaller

Table C1: Characteristic values for tension loads

Anchor size			14/M10
Installation safety factor	γinst	[-]	1,0
Steel failure	-		
Characteristic resistance	$N_{Rk,s}$	[kN]	46
Partial safety factor	γ̃Ms	[-]	1,5
Pull-out failure			
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	12
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	20
Increasing factors for N _{RK,p}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$
Concrete cone failure			
Effective Anchorage depth	h _{ef}	[mm]	65
Spacing	$S_{cr,N}$	[mm]	3 h _{ef}
Edge distance	$C_{cr,N}$	[mm]	1,5 h _{ef}
Factor k₁ for cracked concrete	$k_{cr,N}$	[-]	7,7
Factor k₁ for uncracked concrete	$k_{ucr,N}$	[-]	11,0
Splitting failure			
Characteristic resistance in uncracked concrete	$N^0_{\ Rk,sp}$	[kN]	min [N _{Rk,p} ;N ⁰ _{Rk,c}]
Spacing	S _{cr,sp}	[mm]	390
Edge distance	C _{cr,sp}	[mm]	195

Table C2: Displacements under tension loads

Anchor size			14/M10
Tension load in cracked concrete	N	[kN]	5,7
Displacement	δ_{N0}	[mm]	0,8
Displacement	$\delta_{N\infty}$	[mm]	1,5
Tension load in uncracked concrete	N	[kN]	9,5
Displacement	δ_{N0}	[mm]	0,3
Displacement	$\delta_{N\infty}$	[mm]	1,2

Performance

Characteristic values and displacements under tension load

Annex C1

Table C3: Characteristic values for shear loads

Anchor size			
Steel failure without lever arm			
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} ≤ 75 mm	$V^0_{Rk,s}$	[kN]	32,8
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} > 75 mm	$V^0_{Rk,s}$	[kN]	23,2
Factor	k_7	[-]	1,0
Partial safety factor γ _{Ms} [-]		[-]	1,25
Steel failure with lever arm			
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	60
Partial safety factor	γMs	[-]	1,25
Concrete pry-out failure			
Factor	k ₈	[-]	2,0
Concrete edge failure			
Effective length of anchor in shear loading I _f [mm]		[mm]	65
Outside diameter of anchor	d_{nom}	[mm]	14

Table C4: Displacements under shear loads

Anchor size			14/M10
Shear load in non-cracked concrete	V	[kN]	13,2
Dianlesement	δ_{V0}	[mm]	2,2
Displacement	δ_{V^∞}	[mm]	3,3

Highload Anchor SLZ	
---------------------	--

Table C5: Characteristic values under fire exposure in concrete C20/25 to C50/60

Anchor size				14/M10
Tension load				
Steel failure				
	R30	_		0,9
Characteristic resistance	R60	NI	[kN]	0,8
Characteristic resistance	R90	$N_{Rk,s,fi}$		0,6
	R120			0,5
Shear load				
Steel failure without lever arm				
	R30	V _{Rk,s,fi}	[kN]	0,9
Characteristic resistance	R60			0,8
Characteristic resistance	R90			0,6
	R120			0,5
Steel failure with lever arm				
	R30			1,1
Characteristic resistance	R60	$- M^0_{Rk,s,fi}$	[Nm]	1,0
Onal acteristic resistance	R90	IVI Rk,s,fi	ן נואווון	0,7
	R120	_		0,6

High	load	Ancho	r SLZ