

YDEEVNEDEKLARATION DoP Nr. MKT-161 - dk

- 1. Varetypens unikke identifikationskode: MKT Sværlastanker SLZ
- 2. Type-, parti- eller serienummer eller en anden form for angivelse, ved hjælp af hvilken byggevaren kan identificeres som krævet i henhold til artikel 11, stk. 4:

ETA-09/0342, Annex A2 Batch nummer: se pakningen

3. Byggevarens tilsigtede anvendelse eller anvendelser i overensstemmelse med den gældende harmoniserede tekniske specifikation som påtænkt af fabrikanten:

Produkttype	Tilspændingsmoment kontroleret ekspansionsanker (Hylse type)		
For anvendelse i	revnet og ikke revnet beton C20/25 - C50/60 (EN 206)		
Option	1		
Belastning	Statisk og kvasi-statisk		
Material	Stål galvaniseret: Kun i tørre inde områder Størrelser: SLZ-S (14 M10) SLZ-B (14 M10)		
Temperaturområde			

4. Fabrikantens navn, registrerede firmabetegnelse eller registrerede varemærke og kontaktadresse som krævet i henhold til artikel 11, stk. 5:

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 D - 67685 Weilerbach

5. I givet fald navn og kontaktadresse på den bemyndigede repræsentant, hvis mandat omfatter opgaverne i artikel 12, stk. 2:

-1-

- 7. Hvis ydeevnedeklarationen vedrører en byggevare, der er omfattet af en harmoniseret standard:

01.03.2018

8. Hvis ydeevnedeklarationen vedrører en byggevare, for hvilken der er udstedt en europæisk teknisk vudering:

Deutsches Institut für Bautechnik, Berlin

og udstedte:

ETA-09/0342

på grundlag af,

EAD 330232-00-0601

Det notificerede produkcertificeringsorgan 1343-CPR udførte kontrollen efter system 1:

- i) bestemmelse af varetypen på grundlag af typeprøvning (herunder stikprøveudtagning), typeberegning, tabelværdier eller deskriptiv dokumentation for byggevaren
- ii) indledende inspektion af fabriksanlæg og fabrikkens egen produktionskontrol
- iii) kontinuerlig overvågning, vurdering og evaluering af fabrikkens egen produktionskontrol

og udstedte:

attest for byggevarers ydeevnens konstans 1343-CPR-M550-23/08.14

9. Deklareret ydeevne:

Karakteristiske kendetegn	Beregningsmetode	Ydeevne	Harmoniserede tekniske specifikationer
Karakteristisk modstand ved trækbelastning	FprEN 1992-4 & TR 055	Annex C1	
Karakteristisk modstand ved tværbelastning	FprEN 1992-4 & TR 055	Annex C2	EAD 330232-00-0601
Forskydning i anvendelstilstand	FprEN 1992-4 & TR 055	Annex C1 & C2	
Karakteristisk modstand under brandpåvirkninger	FprEN 1992-4 & TR 055	Annex C3	S a.

Hvis der er anvendt specifik teknisk dokumentation i medfør af artikel 37 eller 38, de krav varen opfylder:

10. Ydeevnen for den byggevare, der er anført i punkt 1 og 2, er i overensstemmelse med den deklarerede ydeevne i punkt 9.

Denne ydeevnedeklaration udstedes på eneansvar af den fabrikant, der er anført i punkt 4.

Underskrevet for fabrikanten og på dennes vegne af:

Stefan Weustenhagen

(CEO)

Weilerbach, 01.03.2018

Dipl.-Ing. Detlef Bigalke (Chef for Produktudvikling)

- 2 - 01.03.2018

Table C1: Characteristic values for tension loads

Anchor size			14/M10
Installation safety factor	γinst	[-]	1,0
Steel failure	-		
Characteristic resistance	$N_{Rk,s}$	[kN]	46
Partial safety factor	γ̃Ms	[-]	1,5
Pull-out failure			
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	12
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	20
Increasing factors for N _{RK,p}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$
Concrete cone failure			
Effective Anchorage depth	h _{ef}	[mm]	65
Spacing	$S_{cr,N}$	[mm]	3 h _{ef}
Edge distance	$C_{cr,N}$	[mm]	1,5 h _{ef}
Factor k₁ for cracked concrete	$k_{cr,N}$	[-]	7,7
Factor k₁ for uncracked concrete	$k_{ucr,N}$	[-]	11,0
Splitting failure			
Characteristic resistance in uncracked concrete	$N^0_{\ Rk,sp}$	[kN]	min [N _{Rk,p} ;N ⁰ _{Rk,c}]
Spacing	S _{cr,sp}	[mm]	390
Edge distance	C _{cr,sp}	[mm]	195

Table C2: Displacements under tension loads

Anchor size			14/M10
Tension load in cracked concrete	N	[kN]	5,7
Displacement	δ_{N0}	[mm]	0,8
Displacement	$\delta_{N\infty}$	[mm]	1,5
Tension load in uncracked concrete	N	[kN]	9,5
Displacement	δ_{N0}	[mm]	0,3
Displacement	$\delta_{N\infty}$	[mm]	1,2

Performance

Characteristic values and displacements under tension load

Annex C1

Table C3: Characteristic values for shear loads

Anchor size			
Steel failure without lever arm			
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} ≤ 75 mm	$V^0_{Rk,s}$	[kN]	32,8
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} > 75 mm	$V^0_{Rk,s}$	[kN]	23,2
Factor	k_7	[-]	1,0
Partial safety factor γ_{Ms} [-]		[-]	1,25
Steel failure with lever arm			
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	60
Partial safety factor	γMs	[-]	1,25
Concrete pry-out failure			
Factor	k ₈	[-]	2,0
Concrete edge failure			
Effective length of anchor in shear loading I _f [mm]		65	
Outside diameter of anchor	d_{nom}	[mm]	14

Table C4: Displacements under shear loads

Anchor size			14/M10
Shear load in non-cracked concrete	V	[kN]	13,2
Dianlesement	δ_{V0}	[mm]	2,2
Displacement	δ_{V^∞}	[mm]	3,3

Highload Anchor SLZ	
---------------------	--

Table C5: Characteristic values under fire exposure in concrete C20/25 to C50/60

Anchor size				14/M10	
Tension load					
Steel failure					
	R30	N		0,9	
Characteristic resistance	R60		[kN]	0,8	
Characteristic resistance	R90	$N_{Rk,s,fi}$		0,6	
	R120			0,5	
Shear load					
Steel failure without lever arm					
	R30	$V_{Rk,s,fi}$	[kN]	0,9	
Characteristic resistance	R60			0,8	
Characteristic resistance	R90		▼ Rk,s,fi	[KIN]	0,6
	R120			0,5	
Steel failure with lever arm					
	R30	$M^0_{Rk,s,fi}$	[mI/I]	1,1	
Characteristic resistance	R60			1,0	
Onal acteristic resistance	R90	IVI Rk,s,fi	[Nm]	0,7	
	R120	_		0,6	

High	load	Ancho	r SLZ