

DÉCLARATION DES PERFORMANCES DOP N° MKT-161 - fr

- 1. Code d'identification unique du produit type: MKT Cheville d'ancrage fixation lourde SLZ
- 2. Numéro de type, de lot ou de série ou tout autre élément permettant l'identification du produit de construction, conformément à l'article 11, paragraphe 4:

ETA-09/0342, Annex A2 Numéro de lot: voir emballage

3. Usage ou usages prévus du produit de construction, conformément à la spécification technique harmonisée applicable, comme prévu par le fabricant:

Type de produit	Cheville d'ancrage à couple de serrage contrôlé (type douille)		
Pour utilisation dans	béton fissuré et non fissuré C20/25 - C50/60 (EN 206)		
Option	1		
Charge	Statique ou quasi-statique		
Matériau	Acier galvanisé: Dans des locaux intérieurs secs uniquement Dimensions comprises: SLZ-S (14 M10) SLZ-B (14 M10)		
Plage de température (éventuellement)			

4. Nom, raison sociale ou marque déposée et adresse de contact du fabricant, conformément à l'article 11, paragraphe 5:

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 D - 67685 Weilerbach

5. Le cas échéant, nom et adresse de contact du mandataire dont le mandat couvre les tâches visées à l'article 12, paragraphe 2:

-1-

- 6. Le ou les systèmes d'évaluation et de vérification de la constance des performances du produit de construction, conformément à l'annexe V: Système 1
- 7. Dans le cas de la déclaration des performances concernant un produit de construction couvert par une norme harmonisée:

01.03.2018

8. Dans le cas de la déclaration des performances concernant un produit de construction pour lequel une évaluation technique européenne a été délivrée:

Deutsches Institut für Bautechnik, Berlin

a délivré:

ETA-09/0342

sur la base de

EAD 330232-00-0601

a réalisé 1343-CPR selon le système 1:

- i) La détermination du produit type sur la base d'essais de type (y compris l'échantillonnage), de calculs relatifs au type, de valeurs issues de tableaux ou de la documentation descriptive du produit ;
- ii) Une inspection notifié de certification du contrôle de la production;
- iii) Une surveillance, une évaluation et une appréciation permanentes du contrôle de la production en usine.

a délivré: le certificat de constance des performances 1343-CPR-M550-23/08.14

9. Performances déclarées:

Caractéristiques essentielles	Méthode d'évaluation	Performances	Spécifications techniques harmonisées	
Résistance caractéristiques en charge de traction	FprEN 1992-4 & TR 055	Annex C1		
Résistance caractéristiques en charge transversale	FprEN 1992-4 & TR 055	Annex C2	EAD 330232-00-0601	
Décalage à l'état d'utilisation	FprEN 1992-4 & TR 055	Annex C1 & C2	LAD 330202-00-0001	
Résistance caractéristiques entre influence de feu	FprEN 1992-4 & TR 055	Annex C3		

Lorsque, conformément à l'article 37 ou 38, la documentation technique spécifique a été utilisée, les exigences remplies par le produit --

10. Les performances du produit identifié aux points 1 et 2 sont conformes aux performances déclarées indiquées au point 9.

La présente déclaration des performances est établie sous la seule responsabilité du fabricant identifié au point 4.

En Julh

Signée pour le fabricant et en son nom par:

Stefan Weustenhagen

(Directeur général)

Weilerbach, 01.03.2018

Dipl.-Ing. Detlef Bigalke

(Directeur du développement de produits)

Table C1: Characteristic values for tension loads

Anchor size			14/M10
Installation safety factor	γinst	[-]	1,0
Steel failure	-		
Characteristic resistance	$N_{Rk,s}$	[kN]	46
Partial safety factor	γ̃Ms	[-]	1,5
Pull-out failure			
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	12
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p}$	[kN]	20
Increasing factors for N _{RK,p}	Ψс	[-]	$\left(\frac{f_{ck}}{20}\right)^{0.5}$
Concrete cone failure			
Effective Anchorage depth	h _{ef}	[mm]	65
Spacing	$S_{cr,N}$	[mm]	3 h _{ef}
Edge distance	$C_{cr,N}$	[mm]	1,5 h _{ef}
Factor k₁ for cracked concrete	$k_{cr,N}$	[-]	7,7
Factor k₁ for uncracked concrete	$k_{ucr,N}$	[-]	11,0
Splitting failure			
Characteristic resistance in uncracked concrete	$N^0_{\ Rk,sp}$	[kN]	min [N _{Rk,p} ;N ⁰ _{Rk,c}]
Spacing	S _{cr,sp}	[mm]	390
Edge distance	C _{cr,sp}	[mm]	195

Table C2: Displacements under tension loads

Anchor size			14/M10
Tension load in cracked concrete	N	[kN]	5,7
Displacement	δ_{N0}	[mm]	0,8
Displacement	$\delta_{N\infty}$	[mm]	1,5
Tension load in uncracked concrete	N	[kN]	9,5
Displacement	δ_{N0}	[mm]	0,3
Displacement	$\delta_{N\infty}$	[mm]	1,2

Performance

Characteristic values and displacements under tension load

Annex C1

Table C3: Characteristic values for shear loads

Anchor size			
Steel failure without lever arm			
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} ≤ 75 mm	$V^0_{Rk,s}$	[kN]	32,8
Characteristic resistance, fixture mounted on distance sleeve with t _{fix} > 75 mm	$V^0_{Rk,s}$	[kN]	23,2
Factor	k_7	[-]	1,0
Partial safety factor γ _{Ms} [-]		[-]	1,25
Steel failure with lever arm			
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	60
Partial safety factor	γMs	[-]	1,25
Concrete pry-out failure			
Factor	k ₈	[-]	2,0
Concrete edge failure			
Effective length of anchor in shear loading I _f [mm]		[mm]	65
Outside diameter of anchor	d_{nom}	[mm]	14

Table C4: Displacements under shear loads

Anchor size			14/M10
Shear load in non-cracked concrete	V	[kN]	13,2
Dianlesement	δ_{V0}	[mm]	2,2
Displacement	δ_{V^∞}	[mm]	3,3

Highload Anchor SLZ	
---------------------	--

Table C5: Characteristic values under fire exposure in concrete C20/25 to C50/60

Anchor size				14/M10	
Tension load					
Steel failure					
	R30	_		0,9	
Characteristic resistance	R60	N	[kN]	0,8	
Characteristic resistance	R90	$N_{Rk,s,fi}$		0,6	
	R120			0,5	
Shear load					
Steel failure without lever arm					
	R30	V _{Rk,s,fi}	[kN]	0,9	
Characteristic resistance	R60			0,8	
Characteristic resistance	R90		▼ Rk,s,fi	[KIN]	0,6
	R120			0,5	
Steel failure with lever arm					
	R30			1,1	
Characteristic resistance	R60	$- M^0_{Rk,s,fi}$	[Nm]	1,0	
Onal acteristic resistance	R90	IVI Rk,s,fi	ן נואווון	0,7	
	R120	_		0,6	

High	load	Ancho	r SLZ