

LEISTUNGSERKLÄRUNG

DoP Nr.: MKT-124 - de

♦ Eindeutiger Kenncode des Produkttyps:

Schwerlastanker SZ

♦ Verwendungszweck(e):

Mechanischer Dübel zur Verankerung in gerissenem und

ungerissenem Beton, siehe Anhang B

♦ Hersteller:

MKT Metall-Kunststoff-Technik GmbH & Co.KG

Auf dem Immel 2 67685 Weilerbach

♦ System(e) zur Bewertung und

Überprüfung der Leistungsbeständigkeit:

1

♦ Europäisches Bewertungsdokument:

Europäische Technische Bewertung:

EAD 330232-00-0601 ETA-02/0030, 10.07.2018

Europaische Technische Bewertung

DIBt, Berlin

Technische Bewertungsstelle: Notifizierte Stelle(n):

NB 1343 - MPA, Darmstadt

♦ Erklärte Leistung(en):

Wesentliche Merkmale	Leistung
Mechanische Festigkeit und Standsicherheit (BWR1)	
Charakteristische Widerstände für statische und quasi-statische Lasten	Anhang C1 – C6
Charakteristische Widerstände für die seismische Leistungskategorien C1+C2	Anhang C7 – C8
Verschiebungen	Anhang C10 – C11
Brandschutz (BWR2)	
Brandverhalten	Klasse A1
Feuerwiderstand	Anhang C9

Die Leistung des vorstehenden Produkts entspricht der erklärten Leistung / den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Stefan Weustenhager (Geschäftsführer)

Weilerbach, 10.07.2018

Dipl.-Ing. Detlef Bigalke
(Leiter der Produktentwicklung)

Spezifizierung des Verwendungszwecks

Schwerlastanker SZ, Stahl verzinkt	10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Statische oder quasi-statische Einwirkung	✓							
Seismische Einwirkung (SZ-B und SZ-S)	- C1 + C2							
Seismische Einwirkung (SZ-SK)	- C1 + C2 -							
Brandbeanspruchung	R 30 R 120							

Schwerlastanker SZ, nichtrostender Stahl A4	12/M8	15/M10	18/M12	24/M16	
Statische oder quasi-statische Einwirkung	✓				
Seismische Einwirkung (SZ-B und SZ-S)		C1 -	+ C2		
Seismische Einwirkung (SZ-SK)	C1 + C2				
Brandbeanspruchung	R30 R120				

Verankerungsgrund:

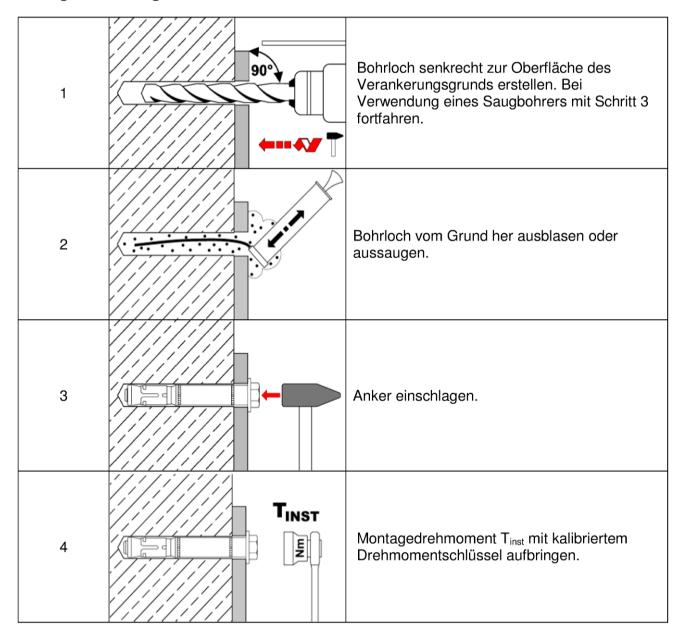
- Gerissener und ungerissener Beton
- Verdichteter, bewehrter oder unbewehrter Normalbeton (ohne Fasern) nach EN 206:2013
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206:2013

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter Bedingungen trockener Innenräume (verzinkter Stahl oder nichtrostender Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl).

Anmerkung: Besonders aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z.B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:


- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) anzugeben
- Bemessung der Verankerungen unter statischer oder quasi-statischer Einwirkung, bei seismischer Beanspruchung oder bei Brandbeanspruchung erfolgt nach FprEN 1992-4:2016 in Verbindung mit TR 055.

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters.
- Bei Fehlbohrung: Anordnung eines neuen Bohrlochs im Abstand > 2 x Tiefe der Fehlbohrung oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Einhaltung der effektiven Verankerungstiefe. Bei Befestigungen mit Verankerungstiefen hef > hef,min reduziert sich die nutzbare Klemmstärke um hef hef,min.
- Verwendung wie vom Hersteller geliefert, ohne Austausch einzelner Teile.
- Bohrlocherstellung nur durch Hammerbohren (Verwendung von Saugbohrern ist erlaubt)

Schwerlastanker SZ	
Verwendungszweck Spezifizierung des Verwendungszwecks	Anhang B1

Montageanweisung

Schwerlastanker SZ	
Verwendungszweck Montageanweisung	Anhang B2

Einbauzustand ر م Setztiefenmarkierung für h_{ef,min} $\mathbf{h}_{\text{ef,min}}$ $\mathbf{t}_{\mathsf{fix,max}}$ h_1 h Ø 1 $h_{ef,min} \le h_{ef} \le h_{ef,max}$ $\mathbf{t}_{\mathsf{fix}}$ h_1 h g Q $h_{\rm ef,max}$ h_1 h Schwerlastanker SZ Anhang B3 Verwendungszweck

Einbauzustand

Tabelle B1: Montage- und Dübelkennwerte, Stahl verzinkt

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Gewinde		[-]	М6	М8	M10	M12	M16	M16	M20	M24
Minimale wirksame Verankerungstiefe	h _{ef,min}	[mm]	50	60	71	80	100	115	125	150
Maximale wirksame Verankerungstiefe	$h_{\text{ef},\text{max}}$	[mm]	76	100	110	130	114	150	185	210
Bohrernenndurchmesser	$d_0 =$	[mm]	10	12	15	18	24	24	28	32
Bohrerschneidendurch- messer	d _{cut} ≤	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55	32,7
Bohrlochtiefe	$h_1 \geq$	[mm]	h _{ef} + 15	h _{ef} + 20	h _{ef} + 25	h _{ef} + 25	h _{ef} + 30	h _{ef} + 30	h _{ef} + 35	h _{ef} + 30
Durchgangsloch im anzuschließenden Bauteil	d₁≤	[mm]	12	14	17	20	26	26	31	35
Dicke der Senkscheibe SZ-SK	t _{sk}	[mm]	4	5	6	7	-	-	-	-
Mindestanbauteildicke SZ-SK	t _{fix min} 2)	[mm]	8	10	14	18	-	-	1	-
Montage- T _{inst}	(SZ-B, SZ-S)	[Nm]	15	30	50	80	160	160	280	280
drehmoment T _{inst}	(SZ-SK)	[Nm]	10	25	55	70	-	-	-	-
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 50	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100	h _{ef} + 115	h _{ef} + 125	h _{ef} + 150
Minimaler Achsabstand 1) 3	Smin	[mm]	50	50	60	70	100	100	125	150
gerissener Beton	für c ≥	[mm]	50	80	120	140	180	180	300	300
Minimaler Randabstand 1) 3	Cmin	[mm]	50	55	60	70	100	100	180	150
gerissener Beton	für s ≥	[mm]	50	100	120	160	220	220	540	300
Minimaler Achsabstand 1) 3	Smin	[mm]	50	60	60	70	100	100	125	150
ungerissener Beton	für c ≥	[mm]	80	100	120	140	180	180	300	300
Minimaler Randabstand 1) 3	Cmin	[mm]	50	60	60	70	100	100	180	150
ungerissener Beton	für s ≥	[mm]	100	120	120	160	220	220	540	300

¹⁾ Zwischenwerte dürfen interpoliert werden

Montage- und Dübelkennwerte, Stahl verzinkt

²⁾ Die Anbauteildicke darf, abhängig von der tatsächlich vorhandenen Querlast, bis auf die Dicke der Senkscheibe t_{sk} (siehe Anhang A2) reduziert werden. Es ist nachzuweisen, dass die Querlast vollständig in die Distanzhülse eingeleitet werden kann (Lochleibung).
³⁾ Bei mehrseitiger Brandbeanspruchung gilt c \geq 300 mm bzw. $c_{min} \geq$ 300 mm.

Tabelle B2: Montage- und Dübelkennwerte, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16
Gewinde		[-]	M8	M10	M12	M16
Minimale wirksame Verankerungstiefe	h _{ef,min}	[mm]	60	71	80	100
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	100	110	130	150
Bohrernenndurchmesser	$d_0 =$	[mm]	12	15	18	24
Bohrerschneidendurchmesser	$d_{cut} \leq$	[mm]	12,5	15,5	18,5	24,55
Bohrlochtiefe	h₁ ≥	[mm]	h _{ef} + 20	h _{ef} + 25	h _{ef} + 25	h _{ef} + 30
Durchgangsloch im anzuschließenden Bauteil	d₁≤	[mm]	14	17	20	26
Dicke der Senkscheibe SZ-SK	t_{sk}	[mm]	5	6	7	-
Mindestanbauteildicke SZ-SK	t _{fix min} 2)	[mm]	10	14	18	-
	T _{inst} (SZ-B)	[Nm]	35	55	90	170
Montagedrehmoment	Tinst (SZ-S)	[Nm]	30	50	80	170
	T _{inst} (SZ-SK)	[Nm]	17,5	42,5	50	-
Mindestbauteildicke	h _{min}	[mm]	h _{ef} + 60	h _{ef} + 69	h _{ef} + 80	h _{ef} + 100
Minimaler Achsabstand 1) 3)	Smin	[mm]	50	60	70	80
gerissener Beton	für c ≥	[mm]	80	120	140	180
Minimaler Randabstand 1) 3)	Cmin	[mm]	50	60	70	80
gerissener Beton	für s ≥	[mm]	80	120	160	200
Minimaler Achsabstand 1) 3)	Smin	[mm]	50	60	70	80
ungerissener Beton	für c ≥	[mm]	80	120	140	180
Minimaler Randabstand 1) 3)	Cmin	[mm]	50	85	70	180
ungerissener Beton	für s ≥	[mm]	80	185	160	80

¹⁾ Zwischenwerte dürfen interpoliert werden

²⁾ Die Anbauteildicke darf, abhängig von der tatsächlich vorhandenen Querlast, bis auf die Dicke der Senkscheibe t_{sk} (siehe Anhang A2) reduziert werden. Es ist nachzuweisen, dass die Querlast vollständig in die Distanzhülse eingeleitet werden kann (Lochleibung).

³⁾ Bei mehrseitiger Brandbeanspruchung gilt $c \ge 300$ mm bzw. $c_{min} \ge 300$ mm.

Tabelle C1: Charakteristische Werte bei **Zugbeanspruchung, gerissener Beton,** statische oder quasi-statische Belastung, **Stahl verzinkt**

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24	
Montagebeiwert	γinst	[-]				1	,0				
Stahlversagen											
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282	
Teilsicherheitsbeiwert	γMs	[-]				1	,5				
Herausziehen											
Charakteristische Tragfähigkeit in gerissenem Beton C20/2	N _{Rk,p} 5	[kN]	5	12	16	25	36	44	50	65	
Erhöhungsfaktor für N _{Rk,p}	ψο	[-]	$\left(rac{\mathrm{f_{ck}}}{20} ight)^{\mathrm{o,5}}$								
Betonausbruch											
Minimale wirksame Verankerungstiefe	$h_{\text{ef},\text{min}}$	[mm]	50	60	71	80	100	115	125	150	
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210	
Faktor für gerissenen Beton	$k_1 = k_{\text{cr},N}$	[-]			7,7						

Schwerlastanker SZ	
Leistung Charakteristische Werte bei Zugbeanspruchung, gerissener Beton, statische oder quasi- statische Belastung. Stahl verzinkt	Anhang C1

Tabelle C2: Charakteristische Werte bei Zugbeanspruchung, gerissener Beton, statische oder quasi-statische Belastung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16			
Montagebeiwert	γinst	[-]	1,0						
Stahlversagen									
SZ-B									
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]	26	41	60	110			
Teilsicherheitsbeiwert	γMs	[-]		1	,5				
SZ-S und SZ-SK									
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]	26	41	60	110			
Teilsicherheitsbeiwert	γMs	[-]		1,	87				
Herausziehen									
Charakteristische Tragfähigkeit in gerissenem Beton C20/25	$N_{Rk,p}$	[kN]	9	16	25	36			
Erhöhungsfaktor für N _{Rk,p}	ψο	[-]	$\left(\frac{\mathrm{f_{ck}}}{20}\right)^{0.5}$						
Betonausbruch									
Minimale wirksame Verankerungstiefe	$h_{\text{ef,min}}$	[mm]	60	71	80	100			
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	100	110	130	150			
Faktor für gerissenen Beton	$k_1 = k_{\text{cr},N} $	[-]	7,7						

Schwerlastanker SZ	
Laiatum	

Charakteristische Werte bei **Zugbeanspruchung**, **gerissener Beton**, statische oder quasistatische Belastung, **nichtrostender Stahl A4**

Tabelle C3: Charakteristische Werte bei **Zugbeanspruchung**, **ungerissener Beton**, statische oder quasi-statische Belastung, **Stahl verzinkt**

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24		
Montagebeiwert	γinst	[-]				1	,0					
Stahlversagen												
Charakteristische Tragfähigkeit	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196	282		
Teilsicherheitsbeiwert	γMs	[-]				1	,5					
Herausziehen	Herausziehen											
Charakteristische Tragfähigkeit in ungerissenem Beton 20/25	$N_{Rk,p}$	[kN]	17	20	30	36	50	1)	70	1)		
Erhöhungsfaktor für N _{Rk,p}	ψο	[-]			$\left(\frac{f_{ck}}{20}\right)^{0.5}$			-	$\left(\frac{f_{ck}}{20}\right)^{0.5}$	-		
Spalten (Es darf der höh	Spalten (Es darf der höhere Widerstand aus Fall 1 und Fall 2 angesetzt werden)											
Fall 1												
Charakteristische Tragfähigkeit in ungerissenem Beton C20/25	N^0 Rk,sp	[kN]	12	16	25	30	40	70	50	70		
Randabstand	C _{cr,sp}	[mm]				1,5	h _{ef}					
Erhöhungsfaktor für N ⁰ _{Rk,sp}	ψο	[-]				$\left(\frac{f_{ck}}{20}\right)$	0,5					
Fall 2												
Charakteristische Tragfähigkeit in ungerissenem Beton	N ⁰ Rk,sp	[kN]				min (<i>N</i> _{Rk}	,p; <i>N</i> ⁰ Rk,c)					
Randabstand	C _{cr,sp}	[mm]			2,5 h _{ef}			1,5 h _{ef}	2,5 h _{ef}	2 h _{ef}		
Betonausbruch												
Minimale wirksame Verankerungstiefe	$h_{ef,min}$	[mm]	50	60	71	80	100	115	125	150		
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	76	100	110	130	114	150	185	210		
Randabstand	C _{cr} ,N	[mm]		1,5 h _{ef}								
Faktor für ungerissenen Beton	$k_1 = k_{\text{ucr},N}$	[-]				11	1,0					

 $N_{Rk,p} = N_{Rk,c}$ berechnet mit $N_{ef,min}$.

Schwerlastanker SZ	
Leistung Charakteristische Werte bei Zugbeanspruchung, ungerissener Beton, statische oder guasi-statische Belastung, Stahl verzinkt	Anhang C3

Tabelle C4: Charakteristische Werte bei Zugbeanspruchung, ungerissener Beton, statische oder quasi-statische Belastung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16
Montagebeiwert	γinst	[-]		1	,0	
Stahlversagen						
SZ-B						
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	26	41	60	110
Teilsicherheitsbeiwert	γMs	[-]		1	,5	
SZ-S und SZ-SK						
Charakteristischer Widerstand	$N_{Rk,s}$	[kN]	26	41	60	110
Teilsicherheitsbeiwert	γMs	[-]		1,	87	
Herausziehen						
Charakteristischer Widerstand in ungerissenem Beton C20/25	$N_{Rk,p}$	[kN]	16	25	35	50
Erhöhungsfaktor für N _{Rk,p}	ψο	[-]		$\left(\frac{\mathrm{f_{ck}}}{20}\right)$	0,5	
Spalten						
Randabstand	Ccr,sp	[mm]	180	235	265	300
Betonausbruch						
Minimale wirksame Verankerungstiefe	h _{ef,min}	[mm]	60	71	80	100
Maximale wirksame Verankerungstiefe	h _{ef,max}	[mm]	100	110	130	150
Randabstand	Ccr,N	[mm]		1,5	h _{ef}	
Faktor für ungerissenen Beton	$k_1 = k_{\text{ucr},N}$	[-]		11	,0	

Schw	erlastan	ker SZ
------	----------	--------

Charakteristische Werte bei **Zugbeanspruchung**, **ungerissener Beton**, statische oder quasi-statische Belastung, **nichtrostender Stahl A4**

Tabelle C5: Charakteristische Werte bei **Querbeanspruchung**, statische oder quasi-statische Belastung, **Stahl verzinkt**

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Stahlversagen ohne h	lebelarr	n								
SZ-B										
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	16	25	36	63	91	91	122	200
Duktilitätsfaktor	k_7	[-]				1,	,0			
SZ-S und SZ-SK										
Charakteristischer Widerstand	V^0 Rk,s	[kN]	18	30	48	73	126	126	150	200
Duktilitätsfaktor	k_7	[-]				1,	,0			
Teilsicherheitsbeiwert	γMs	[-]				1,	25			
Stahlversagen mit He	belarm									
Charakteristischer Biegewiderstand	M ⁰ Rk,s	[Nm]	12	30	60	105	266	266	519	898
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}$	[-]				1,2	25			
Betonausbruch auf de	er lastal	gewan	dten Seit	е						
Pry-out Faktor	k ₈	[-]	1,8 1)				2,0			
Betonkantenbruch										
Wirksame Dübellänge bei Querlast	lf	[mm]				h	ef			
Wirksamer Außendurchmesser	d_{nom}	[mm]	10	12	15	18	24	24	28	32

 $^{^{1)}}$ k₈ = 2,0 für h_{ef} ≥ 60 mm

_			1			\sim
~~	$n \times n$	or	201	neı	vor	<u> </u>
J	1 I VV		аэ	aıı	ker	2

Leistung

Charakteristische Werte bei **Querbeanspruchung,** statische oder quasi-statische Belastung, **Stahl verzinkt**

Tabelle C6: Charakteristische Werte bei **Querbeanspruchung**, statische oder quasi-statische Belastung, **nichtrostender Stahl A4**

Dübelgröße			12/M8	15/M10	18/M12	24/M16		
Stahlversagen ohne Hebelarm								
Charakteristischer Widerstand	$V^0_{Rk,s}$	[kN]	24	37	62	92		
SZ-B				•	•			
Duktilitätsfaktor	k ₇	[-]		1,	,0			
Teilsicherheitsbeiwert	γMs	[-]		1,	25			
SZ-S								
Duktilitätsfaktor	k ₇	[-]		1,	,0			
Teilsicherheitsbeiwert	γMs	[-]		1,	36			
SZ-SK								
Duktilitätsfaktor	k ₇	[-]		0,8		-		
Teilsicherheitsbeiwert	γMs	[-]		1,36		-		
Stahlversagen mit Hebelarm								
Charakteristischer Biegewiderstand	M^0 Rk,s	[Nm]	26	52	92	232		
SZ-B								
Teilsicherheitsbeiwert	γMs	[-]	1,25					
SZ-S und SZ-SK								
Teilsicherheitsbeiwert	γ̃Ms	[-]		1,	56			
Betonausbruch auf der lastabgewandte								
Pry-out Faktor		2	,0					
Betonkantenbruch								
Wirksame Dübellänge bei Querlast	lf	[mm]	h _{ef}					
Wirksamer Außendurchmesser	d_{nom}	[mm]	12	15	18	24		

Schwerlastanker SZ
Leistung Charakteristische Werte bei Querbeanspruchung , statische oder quasi-statische Belastung, nichtrostender Stahl A4

Tabelle C7: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1 und C2, Stahl verzinkt

Dübelgröße		12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20	32/M24					
Zugbeanspruchung													
Montagebeiwert	γinst	[-]		1,0									
Stahlversagen													
Charakteristischer Widerstand, Kategorie C1	$N_{Rk,s,eq,C1}$	[kN]	29	46	67	126	126	196	280				
Charakteristischer Widerstand, Kategorie C2	N _{Rk,s,eq,C2}	[kN]	29	46	67	126	126	196	280				
Teilsicherheitsbeiwert	γ_{Ms}	[-]				1,5							
Herausziehen													
Charakteristischer Widerstand, Kategorie C1	N _{Rk,p,eq,C1}	[kN]	12	16	25	36	44,4	50,3	63,3				
Charakteristischer Widerstand, Kategorie C2	N _{Rk,p,eq,C2}	[kN]	5,4	16,4	22,6	29,0	41,2	43,6	63,3				
Querbeanspruchung													
Stahlversagen ohne Hebe	larm												
SZ-B													
Charakteristischer Widerstand, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1				
Charakteristischer Widerstand, Kategorie C2	$V_{Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	50,1	50,1	67,1	108,1				
SZ-S													
Charakteristischer Widerstand, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4	160,1				
Charakteristischer Widerstand, Kategorie C2	$V_{Rk,s,eq,C2}$	[kN]	12,7	20,5	31,5	69,3	69,3	67,1	108,1				
SZ-SK													
Charakteristischer Widerstand, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	25,2	36,5	50,4	-	-	-	-				
Charakteristischer Widerstand, Kategorie C2	V _{Rk,s,eq,C2}	[kN]	19,2	29,3	39,4	-	-	-	-				
Faktor für Ringspalt	$lpha_{ ext{gap}}$	[-]				0,5							
Teilsicherheitsbeiwert	γMs	[-]				1,25							

Schwerlastanker SZ	
Leistung Charakteristische Werte bei seismischer Beanspruchung, Stahl verzinkt	Anhang C7

Tabelle C8: Charakteristische Werte bei seismischer Beanspruchung, Kategorie C1 und C2, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16
Zugbeanspruchung						
Montagebeiwert	γinst	[-]		1,	0	
Stahlversagen						
Charakteristischer Widerstand, Kategorie C1	$N_{Rk,s,eq,C1}$	[kN]	26	41	60	110
Charakteristischer Widerstand, Kategorie C2	$N_{Rk,s,eq,C2}$	[kN]	26	41	60	110
Teilsicherheitsbeiwert SZ-B	γ̃Ms	[-]		1,	5	
Teilsicherheitsbeiwert SZ-S und SZ-SK	γ̃Ms	[-]		1,	87	
Herausziehen						
Charakteristischer Widerstand, Kategorie C1	$N_{Rk,p,eq,C1}$	[kN]	9	16	26	36
Charakteristischer Widerstand, Kategorie C2	N _{Rk,p,eq,C2}	[kN]	4,8	16,5	24,8	44,5
Querbeanspruchung						
Stahlversagen ohne Hebelarm						
SZ-B						
Charakteristischer Widerstand, Kategorie C1	$V_{\text{Rk,s,eq,C1}}$	[kN]	9,6	13,3	25,4	75,4
Charakteristischer Widerstand, Kategorie C2	$V_{\text{Rk,s,eq,C2}}$	[kN]	9,7	14,0	18,0	32,2
Teilsicherheitsbeiwert	γ_{Ms}	[-]		1,	25	
SZ-S						
Charakteristischer Widerstand, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	9,6	13,3	25,4	75,4
Charakteristischer Widerstand, Kategorie C2	$V_{\text{Rk,s,eq,C2}}$	[kN]	9,7	14,0	18,0	32,2
Teilsicherheitsbeiwert	γ_{Ms}	[-]		1,	36	
SZ-SK						
Charakteristischer Widerstand, Kategorie C1	$V_{Rk,s,eq,C1}$	[kN]	11,5	23,3	31,6	-
Charakteristischer Widerstand, Kategorie C2	$V_{Rk,s,eq,C2}$	[kN]	10,8	17,4	15,4	-
Teilsicherheitsbeiwert	γ_{Ms}	[-]		1,36		1

Schwerlastanker SZ	
Leistung Charakteristische Werte bei seismischer Beanspruchung, nichtrostender Stahl A4	Anhang C8

Tabelle C9: Charakteristische Werte unter **Brandeinwirkung** in gerissenem und ungerissenem Beton C20/25 bis C50/60

Dübelgröße				10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Zugbeanspruchun	g										
Stahlversagen											
Stahl, verzinkt											
	R30			1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Charakteristischer	R60	$N_{Rk,s,fi}$	 [kN]	0,8	1,5	3,2	4,6	8	,6	13,5	19,5
Widerstand	R90	I NHK,S,II	[KIN]	0,6	1,0	2,1	3,0		,0	7,7	12,6
	R120			0,4	0,8	1,5	2,0	3	,1	4,9	9,2
Nichtrostender Sta	ahl A4										
	R30			-	6,1	10,2	15,7	29,2	-	-	-
Charakteristischer	R60	$N_{Rk,s,fi}$	[kN]	-	4,4	7,3	11,1	20,6	-	-	-
Widerstand	R90	I VHK,S,II	[KIN]	-	2,6	4,3	6,4	12,0	-	-	-
	R120			-	1,8	2,8	4,1	7,7	-	-	-
Querbeanspruchu	ng										
Stahlversagen ohr	ne Heb	elarm									
Stahl, verzinkt											
	R30			1,0	1,9	4,3	6,3	11	,6	18,3	26,3
Charakteristischer	R60	V	[LANI]	0,8	1,5	3,2	4,6	8	,6	13,5	19,5
Widerstand	R90	$V_{Rk,s,fi}$	[kN]	0,6	1,0	2,1	3,0	5	,0	7,7	12,6
	R120	'		0,4	0,8	1,5	2,0	3	,1	4,9	9,2
Nichtrostender Sta	ahl A4										
	R30			-	14,3	22,7	32,8	61,0	-	-	-
Charakteristischer	R60	$V_{Rk,s,fi}$	 [kN]	-	11,1	17,6	25,5	47,5	-	-	1
Widerstand	R90	V HK,S,∏	[ויוא]	-	7,9	12,6	18,3	34,0	-	-	-
	R120			-	6,3	10,0	14,6	27,2	-	-	-
Stahlversagen mit	Hebel	arm									
Stahl, verzinkt											
	R30			0,8	2,0	5,6	9,7	24	,8	42,4	83,6
Charakteristischer	R60	M ⁰ Rk,s,fi	[NIm]	0,6	1,5	4,1	7,2	18	3,3	29,8	61,9
Biegewiderstand	R90	IVI* Hk,s,fi	ן נויאוון	0,4	1,0	2,7	4,7	11	,9	17,1	40,1
	R120			0,3	0,8	1,9	3,1	6	,6	10,7	29,2
Nichtrostender Sta	ahl A4										
	R30			-	6,2	13,2	24,4	61,8	-	-	-
Charakteristischer	R60	$M^0_{Rk,s,fi}$	[Nm]	-	4,5	9,4	17,2	43,6	-	-	-
Biegewiderstand	R90	IVI* Hk,s,fi	[[ואווו]	-	2,7	5,6	10,0	25,3	-	-	-
	R120			-	1,8	3,6	6,4	16,2	-	-	-

 $Wenn \ Herausziehen \ nicht \ maßgebend \ ist, \ muss \ N_{Rk,p} \ in \ Gleichung \ D.4 \ und \ D.5, \ FprEN1992-4:2016 \ durch \ N^0_{Rk,c} \ ersetzt \ werden.$

Schwerlastanker SZ
Leistung Charakteristische Werte unter Brandeinwirkung

Anhang C9

 Tabelle C10:
 Verschiebung unter Zug- und Querbeanspruchung, Stahl verzinkt

Dübelgröße			10/M6	12/M8	15/M10	18/M12	24/M16	24/ M16L	28/M20	32/M24
Zugbeanspruchung										
Zuglast im gerissenen Beton	N	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24	26,2
Verschiebung	δ_{No}	[mm] [mm]	0,5 2,0	0,5 2,0	0,5 1,3	0,7 1,3	0,8 1,3	0,7 1,3	0,9 1,4	1,4 1,9
Zuglast im ungerissenen Beton	N	[kN]	8,5	9,5	14,3	17,2	24	29,6	34	43
Verschiebung	δ _{N∞}	[mm]	0,8	1,0 ,4	0 1,1 1,7			1,3 2,3	0,3 1,4	0,7 0,7
Seismische Beanspruch		[]		, .		1,,,		2,0	.,.	0,7
Verschiebung für DLS	δ _{N,eq (DLS)}	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0	5,3
Verschiebung für ULS	$\delta_{\text{N,eq (ULS)}}$	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8	12,4
Querbeanspruchung	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
SZ-B										
Querlast in gerissenem und ungerissenem Beton	V	[kN]	9,1	14	20,7	35,1	52,1	52,1	77	86,6
Verschiebung	$\delta_{ m V0}$	[mm]	2,5	2,1	2,7	3,0	5,1	5,1	4,3	10,5
	δν∞	[mm]	3,8	3,1	4,1	4,5	7,6	7,6	6,5	15,8
Seismische Beanspruch	nung C2								1	
Verschiebung für DLS	δ V,eq (DLS)	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6	6,1
Verschiebung für ULS	δ V,eq (ULS)	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8	9,5
SZ-S				<u> </u>					1	T
Querlast in gerissenem und ungerissenem Beton	٧	[kN]	10,1	17,1	27,5	41,5	72	72	77	86,6
Verschiebung	$\delta_{ extsf{V0}}$	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3	10,5
versementaring	δν∞	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5	15,8
Seismische Beanspruch	nung C2									
Verschiebung für DLS	$\delta_{\text{V,eq (DLS)}}$	[mm]	-	2,3	3,1	3,0	3,3	3,3	1,6	6,1
Verschiebung für ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	-	4,8	6,4	6,1	8,2	8,2	4,8	9,5
SZ-SK										
Querlast in gerissenem ungerissenem Beton	V	[kN]	10,1	17,1	27,5	41,5	-	-	-	-
Verschiebung	$\delta_{ extsf{V0}}$	[mm]	2,9	2,5	3,6	3,5	-	-	-	-
	δν∞	[mm]	4,4	3,8	5,4	5,3	-	-	-	-
Seismische Beanspruchung C2										
Verschiebung für DLS	$\delta_{V,eq\;(DLS)}$	[mm]	-	3,1	3,9	3,9	-	-	-	-
Verschiebung für ULS	δ V,eq (ULS)	[mm]	-	10,2	11,8	13,0	-	-	-	-

Schwer	lastan	ker SZ
--------	--------	--------

Leistung

Verschiebung unter Zug- und Querbeanspruchung, Stahl verzinkt

Anhang C10

Tabelle C11: Verschiebung unter Zug- und Querbeanspruchung, nichtrostender Stahl A4

Dübelgröße			12/M8	15/M10	18/M12	24/M16
Zugbeanspruchung						
Zuglast im gerissenen Beton	N	[kN]	4,3	7,6	12,1	17,0
Verschiebung	δ_{N0}	[mm]	0,5	0,5	1,3	0,5
Verschiebung	$\delta_{N\infty}$	[mm]	1,2	1,6	1,8	1,6
Zuglast im ungerissenen Beton	N	[kN]	7,6	11,9	16,7	24,1
Verschiebung	δ_{N0}	[mm]	0,2	0,3	1,2	1,5
verscriebung	$\delta_{N\infty}$	[mm]	1,1	1,1	1,1	1,1
Seismische Beanspruchung C2						
Verschiebung für DLS	$\delta_{\text{N,eq (DLS)}}$	[mm]	4,7	4,5	4,3	4,9
Verschiebung für ULS	$\delta_{ ext{N,eq (ULS)}}$	[mm]	13,3	12,7	9,7	10,1
Querbeanspruchung						
Querlast in gerissenem und ungerissenem Beton	V	[kN]	13,9	21,1	34,7	50,8
Verschiebung	δ_{V0}	[mm]	3,4	4,9	4,8	6,7
Verschiebung	$\delta_{\text{V}\infty}$	[mm]	5,1	7,4	7,1	10,1
Seismische Beanspruchung C2						
SZ-B, SZ-S						
Verschiebung für DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,8	3,1	2,6	3,3
Verschiebung für ULS	$\delta_{\text{V,eq (ULS)}}$	[mm]	5,6	5,8	5,0	6,9
SZ-SK						
Verschiebung für DLS	$\delta_{\text{V,eq(DLS)}}$	[mm]	2,5	2,8	2,9	-
Verschiebung für ULS	δ V,eq (ULS)	[mm]	5,8	5,9	6,9	-

Schwer	astan	ker SZ
--------	-------	--------

Verschiebung unter Zug- und Querbeanspruchung, nichtrostender Stahl A4