

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0716 of 8 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

contains

This European Technical Assessment is

This European Technical Assessment

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system VMH for concrete

Injection system for use in concrete

MKT
Metall-Kunststoff-Technik GmbH & Co. KG
Auf dem Immel 2
67685 Weilerbach
DEUTSCHLAND

Werk 1, D Werk 2, D

25 pages including 3 annexes which form an integral part of this assessment

ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-17/0716

Page 2 of 25 | 8 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z50591.17 8.06.01-310/17

European Technical Assessment ETA-17/0716

Page 3 of 25 | 8 December 2017

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "Injection system VMH for concrete" is a bonded anchor consisting of a cartridge with injection mortar VMH and a steel element. The steel element consist of a threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod VMU-IG M6 to VMU-IG M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi-static action and seismic performance categories C1, C2	See Annex C 1 to C 7
Displacements	See Annex C 8 to C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z50591.17 8.06.01-310/17

European Technical Assessment ETA-17/0716

Page 4 of 25 | 8 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

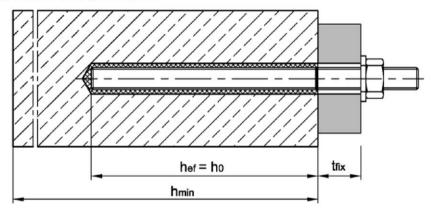
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

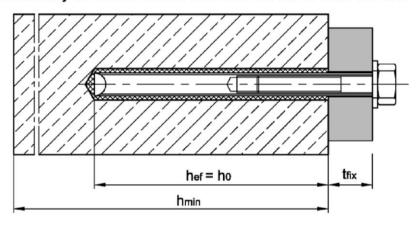
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

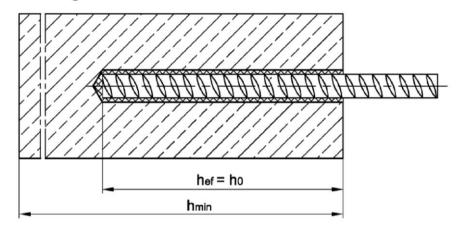
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 8 December 2017 by Deutsches Institut für Bautechnik


BD Dipl.-Ing. Andreas Kummerow Head of Department

*beglaubigt:*Baderschneider


Z50591.17 8.06.01-310/17


Installation threaded rod M8 to M30

Installation internally threaded anchor rod VMU-IG-M6 to VMU-IG-M20

Installation reinforcing bar Ø8 to Ø32

 t_{fix} = thickness of fixture

 h_{ef} = effective anchorage depth

 $h_0 = depth of drill hole$

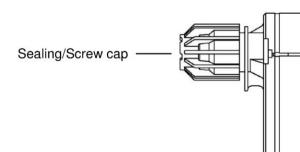
 h_{min} = minimum thickness of member

Injection System VMH for concrete

Product description

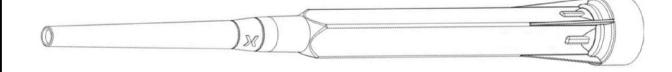
Installation situation

Cartridge Injection Mortar VMH


150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

Imprint: VMH,

processing notes, batch number, shelf life, hazard code, storage temperature, curing- and processing time (depending on the temperature), optional with travel scale


235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

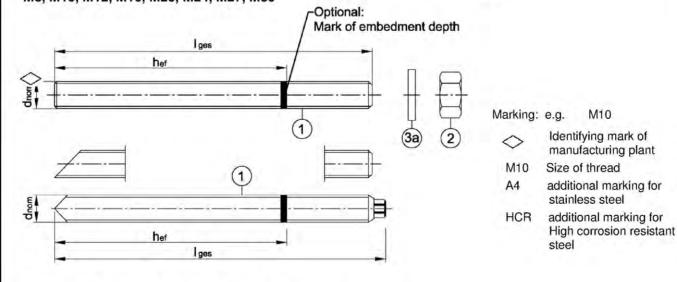
Imprint: VMH,

processing notes, batch number, shelf life, hazard code, storage temperature, curing- and processing time (depending on the temperature), optional with travel scale

Static mixer

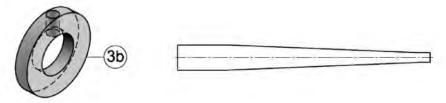
Injection System VMH for concrete

Product description

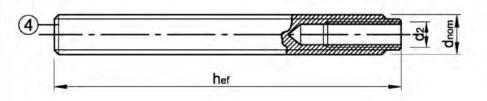

Cartridges and static mixer

Threaded rod

Threaded rod VMU-A, V-A with washer and hexagon nut M8, M10, M12, M16, M20, M24, M27, M30


Threaded rod VM-A (material sold by the metre, to be cut at the required length) M8, M10, M12, M16, M20, M24, M27, M30

Commercial standard threaded rod with:


- Materials, dimensions and mechanical properties see Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004

Washer with bore and reducing adapter for filling the gap between threaded rod and fixture

Internally threaded anchor rod

VMU-IG M6, VMU-IG M8, VMU-IG M10, VMU-IG M12, VMU-IG M16, VMU-IG M20

Marking e.g.: M8

Identifying mark of manufacturing plant Internal thread

M8 Size of internal thread A4 additional marking for

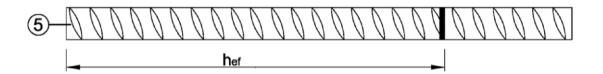
stainless steel

HCR additional marking for high corrosion resistant steel

Injection System VMH for concrete

Product description

Threaded rod and internally threaded anchor rod



Tabl	le A1: M	aterials						
Part		n	Material					
electro			42:1999 or hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 rdized ≥ 40μm acc. to EN ISO 17668:2016					
1	Threaded Property class 4.8 Property class 5.6		Property class 5.6 $f_{uk} \ge 500 \text{ N/mm}^2$; $f_{yk} \ge 300 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation to the property class 5.8 $f_{uk} \ge 500 \text{ N/mm}^2$; $f_{yk} \ge 400 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation to					
2	Hexagon nut		Steel, zinc plated Property class 4 (for class 4.6 or 4.8 rod) Property class 5 (for class 5.6 or 5.8 rod) Property class 8 (for class 8.8 rod)	EN ISO 898-2:2012				
За	Washer		Steel, zinc plated (e.g: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)					
3b	Washer with	bore	Steel, zinc plated					
4	Internally thre	eaded anchor rod	Steel, electroplated, $A_5 > 8$ % fracture elongation Property class 5.8 and 8.8	EN 10087:1998				
Stainle	ess steel A4							
			Material 1.4401 / 1.4404 / 1.4571 / 1.4578 / 1.4362 / 1.4062	EN 10088-1:2014				
1	Threaded rod	Property class 50 Property class 70	f_{uk} = 500 N/mm²; f_{yk} = 210 N/mm²; $A_5 > 12\%$ fracture elongation ¹⁾ f_{uk} = 700 N/mm²; f_{yk} = 450 N/mm²; $A_5 > 12\%$ fracture elongation ¹⁾ M8 to M24	EN ISO 3506-1:2009				
2	Hexagon nut		Stainless steel A4 Property class 50 (for class 50 rod) Property class 70 (for class 70 rod; ≤ M24)					
За	Washer		Stainless steel A4 (e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000)					
3b	Washer with	bore	Material 1.4401 / 1.4404 / 1.4571 / 1.4362					
4	Internally thre	Material 1.4401 / 1.4404 / 1.4571 / 1.4362; Property class 50 (IG-M20) $A_5 > 8$ % fracture elongation Property class 70 (IG-M8 to IG-M16) $A_5 > 8$ % fracture elongation		EN 10088-1: 2014				
High c	corrosion res	istant steel HCR	-					
1	Threaded rod	Property class 50 Property class 70	Material 1.4529 / 1.4565 f_{uk} = 500 N/mm²; f_{yk} = 210 N/mm²; A_5 > 12% fracture elongation ¹⁾ f_{uk} = 700 N/mm²; f_{yk} = 450 N/mm²; A_5 > 12% fracture elongation ¹⁾	EN 10088-1: 2014 EN ISO 3506-1: 2009				
2	Hexagon nut	, ,	M8 to M24 Material 1.4529 / 1.4565 Property class 50 ((for class 50 rod) Property class 70 (for class 70 rod; ≤ M24)	EN 10088-1: 2014 EN ISO 3506-2:2009				
За	Washer		Material 1.4529 / 1.4565 (e.g.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000)	EN 10088-1: 2014				
3b	Washer with	bore	Material 1.4529 / 1.4565					
4	Internally thre	eaded anchor rod	Material 1.4529 / 1.4565, $A_5 > 8$ % fracture elongation Property class 50 (IG-M20), Property class 70 (IG-M8 to IG-M16)	EN 10088-1: 2014				
1) Frac	ture elongatio	n A ₅ > 8 % for applic	cations without requirements for seismic performance category C2	2				
	luct descrip	em VMH for con	crete	Annex A4				

Reinforcing bar

Ø 8, Ø 10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25, Ø 28, Ø 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rip height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Table A2: Material reinforcing bar

Part	Designation	Material
Reba	r	
5	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection	System	VMH for	concrete
mjechon	Cystein	VIVIII IOI	COLICICIE

Product description

Product description and material reinforcing bar

Specification of intended use

	Threaded rod	Internally threaded anchor rod			
Injection System VMH	VMU-A, V-A, VM-A, commercial standard threaded rod	VMU-IG	Rebar		
Static or quasi-static action	M8 - M30 zinc plated, A4, HCR	IG-M6 - IG-M20 electroplated, A4, HCR	Ø8 - Ø32		
Seismic action, category C1	M8 - M30 zinc plated ¹⁾ , A4, HCR	-	Ø8 - Ø32		
Seismic action, category C2	M12 zinc plated ¹⁾ (strength class 8.8) A4, HCR	-	-		
	Reinforced or unreinforced n	ormal weight concrete	acc. to EN 206-1:2000		
Base materials	Strength classes ac	c. to EN 206-1:2000:C2	20/25 to C50/60		
	Cracked and uncracked concrete				
Temperature Range I -40 °C to +80 °C	max long term temperature	+50 °C and max short te	rm temperature +80 °C		
Temperature Range II -40 °C to +120 °C	max long term temperature	+72 °C and max short te	rm temperature +120 °C		
Temperature Range III -40 °C to +160 °C	max long term temperature +	100 °C and max short te	rm temperature +160 °C		

¹⁾ except hot-dip galvanised

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the
 anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTĂ Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:

- Dry or wet concrete
- · Hole drilling by hammer or compressed air drill or vacuum drill mode
- Overhead installation allowed
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class
 of the internally threaded anchor rod

Injection System VMH for concrete	
Intended Use Specifications	Annex B1

Table B1: Installation parameters for threaded rods

Threaded rod	М8	M10	M12	M16	M20	M24	M27	M30		
Diameter of threaded rod	d _{nom} =	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter	$d_0 =$	[mm]	10	12	14	18	22	28	30	35
Effective anchorage depth — h	n _{ef,min} =	[mm]	60	60	70	80	90	96	108	120
h	ef,max =	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Installation torque	T _{inst} ≤	[Nm]	10	20	40 (35) ²⁾	60	100	170	250	300
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀				
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance c _{min} [mm]		35	40	45	50	60	65	75	80	

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d_{nom} + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar ²⁾ Installation torque for M12 with steel grade 4.6

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor ro	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Inner diameter of threaded rod	$d_2 =$	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ²⁾	$d_{nom} =$	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	22	28	35
Effective anchorage depth	$h_{ef,min} =$	[mm]	60	70	80	90	96	120
Lifective anchorage depth	h _{ef,max} =	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	I_{IG}	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			$h_{ef} + 2d_0$		
Minimum spacing	S _{min}	[mm]	50	60	75	95	115	140
Minimum edge distance	C _{min}	[mm]	40	45	50	60	65	80

¹⁾ For larger clearance hole see TR029 section 1.1 2) With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter of rebar	$d = d_{nom} =$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	16	18	20	25	32	35	40
Effective anchorage depth	$h_{ef,min} =$	[mm]	60	60	70	75	80	90	100	112	128
Effective affichorage depth	$h_{ef,max} =$	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h_{min}	[mm]	[mm]		h _{ef} + 2d ₀						
Minimum spacing	S _{min}	[mm]	40	50	60	70	75	95	120	130	150
Minimum edge distance	C _{min}	[mm]	35	40	45	50	50	60	70	75	85

Injection System VMH for concrete

Intended use

Installation parameters

Annex B2

Table B4: Parameter cleaning and setting tools

Threaded rod	Rebar	Internally threaded anchor rod	Drill bit Ø	Brush Ø	min. Brush Ø		Retaining washer			
	mmm			41111111111111111111111111111111111111			Installation direction and use of retaining washer			
[-]	Ø [mm]	[-]	d ₀ [mm]	d _b [mm]	d _{b,min} [mm]	[-]	1	•	t	
M8			10	11,5	10,5		No retaining washer required			
M10	8	VMU-IG M 6	12	13,5	12,5	LTS 41				
M12	10	VMU-IG M 8	14	15,5	14,5	2-27-1	No retain	ning wasner	required	
	12		16	17,5	16,5	8				
M16	14	VMU-IG M10	18	20,0	18,5	VM-IA 18				
	16		20	22,0	20,5	VM-IA 20				
M20		VMU-IG M12	22	24,0	22,5	VM-IA 22				
	20		25	27,0	25,5	VM-IA 25		52.75		
M24		VMU-IG M16	28	30,0	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all	
M27		10 1	30	31,8	30,5	VM-IA 30	250mm	25011111		
	25		32	34,0	32,5	VM-IA 32				
M30	28	VMU-IG M20	35	37,0	35,5	VM-IA 35				
	32	1 11	40	43,5	40,5	VM-IA 40				

Blow-out pump (volume 750ml)

Drill bit diameter (d₀): 10 mm to 20 mm

Drill hole depth (h₀): \leq 10 d_{nom}

for uncracked concrete

Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): all diameters

Retaining washer for overhead or horizontal installation
Drill bit diameter (d₀):
18 mm to 40 mm

Steel brush
Drill bit diameter (d₀): all diameters

Injection System VMH for concrete

Intended Use

Cleaning and setting tools

Annex B3

Installation Instructions Drilling of the hole Drill with hammer drill or compressed air drill or vacuum drill a hole into the base material to the size required by the selected anchor (Table B1, B2 or Table B3). In case of 1. aborted drill hole, the drill hole shall be filled with mortar. Cleaning Attention! Standing water in the bore hole must be removed before cleaning! Cleaning with compressed air Cracked and uncracked concrete: all diameters Starting from the bottom or back of the bore hole, blow out the hole with compressed air 2a. (min. 6 bar) a minimum of two times until return air stream is free of noticeable dust. If the bore hole ground is not reached, an extension must be used. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush ≥ db.min (Table B4) a minimum of two times. 2b. If the bore hole ground is not reached with the brush, a brush extension must be used. min. 6 bar Starting from the bottom or back of the bore hole, blow out the hole with compressed air (min. 6 bar) again a minimum of two times until return air stream is free of noticeable 2c. dust. If the bore hole ground is not reached, an extension must be used. Manual cleaning 2. Drill hole diameter d₀ ≤ 20mm and drill hole depth h₀ ≤ 10 dnom (uncracked concrete only) Starting from the bottom or back of the bore hole, blow out the hole with the blow-out 2a. pump a minimum of four times. Check brush diameter (Table B4). Brush the hole with an appropriate sized wire brush ≥ db.min (Table B4) a minimum of four times. 2b. If the bore hole ground is not reached with the brush, a brush extension must be used. Starting from the bottom or back of the bore hole blow out the hole again a minimum of 2c. four times. After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

Injection System VMH for concrete

Intended Use

Installation instructions

Annex B4

Installation instructions (continuation)

Inje	etion	
3.	AND S	Attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended working time (Table B5) as well as for new cartridges, a new static-mixer shall be used.
4.	her	Prior to inserting the rod into the filled bore hole, the position of the embedment depth shall be marked on the threaded rod or rebar
5.	min.3x	Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.
6a.		Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. For embedment larger than 190 mm, an extension nozzle shall be used. Observe working times given in Table B5.
6b.		Retaining washer and mixer nozzle extensions shall be used according to Table B4 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment depth hef > 250mm • Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Injection System VMH for concrete	
Intended Use Installation instructions (continuation)	Annex B5

Installation instructions (continuation) Inserting the anchor Push the threaded rod or reinforcing bar into the hole while turning slightly to ensure proper distribution of the adhesive until the embedment depth is reached. 7. The anchor shall be free of dirt, grease, oil or other foreign material. Make sure that the anchor is fully seated up to the full embedment depth and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the 8. application has to be renewed. For overhead installation, the anchor should be fixed (e.g. by Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not 9. move or load the anchor until it is fully cured (attend Table B5). 10. Remove excess mortar. The fixture can be mounted after curing time. Apply installation torque T_{inst} according to Table 11. B1 or B2 by using a calibrated torque wrench. Annular gap between anchor rod and attachment may optionally be filled with mortar. Therefore, replace regular washer by washer with bore and plug on reducing adapter on 12. static mixer. Annular gap is completely filled, when excess mortar seeps out.

Tabelle B1: Working time and curing time

	Maximum	Minimum curing time				
Concrete temperature	working time	dry concrete	wet concrete			
-5°C to -1°C	50 min	5 h	10 h			
0°C to +4°C	25 min	3,5 h	7 h			
+5°C to +9°C	15 min	2 h	4 h			
+10°C to +14°C	10 min	1 h	2 h			
+15°C to +19°C	6 min	40 min	80 min			
+20°C to +29°C	3 min	30 min	60 min			
+30°C to +40°C	2 min	30 min	60 min			
Cartridge temperature	e + 5°C to + 40°C					

Injection System VMH for concrete	1
Intended Use Installation instructions (continuation) Working and curing time	Annex B6

Table C1:	Characteristic steel resistance for threaded rods under tension and shear	
	resistance	

	resistance										
Thread				М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel fa	illure										
Tension	n load										
e	Steel, Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
stic	Steel, Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
cteri esis	Steel, Property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resistance	Stainless steel A4 and HCR, Property class 50	$N_{Rk,s}$	[kN]	18	29	42	79	123	177	230	281
ten	Stainless steel A4 and HCR, Property class 70	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
	Steel, Property class 4.6	γMs,N	[-]					,0			
	Steel, Property class 4.8	γMs,N	[-]				1	,5			
tot	Steel, Property class 5.6	γMs,N	[-]				2	,0			
Partial factor	Steel, Property class 5.8	γMs,N	[-]				1	,5			
ırtia	Steel, Property class 8.8	γMs,N	[-]				1	,5			
Pa	Stainless steel A4 and HCR, Property class 50	γMs,N	[-]	2,86							
	Stainless steel A4 and HCR, Property class 70	γMs,N	[-]	1,87 -				-			
Shear I	oad										
Steel fa	allure <u>without</u> lever arm										
ф	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
istic	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
cter	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance	Stainless steel A4 and HCR, Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
	Stainless steel A4 and HCR, Property class 70	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Steel fa	allure <u>with</u> lever arm										
t t	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
racteristic ng moment	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
cter	Steel, Property class 8.8	$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending momer	Stainless steel A4 and HCR, Property class 50	$M_{Rk,s}$	[Nm]	19	37	66	167	325	561	832	1125
Pee	Stainless steel A4 and HCR, Property class 70	$M_{Rk,s}$	[Nm]	26	52	92	232	454	784	-	-
	Steel, Property class 4.6	γMs,V	[-]				1,	67			
	Steel, Property class 4.8	γMs,V	[-]					25			
itor	Steel, Property class 5.6	γMs,V	[-]					67			
Partial factor	Steel, Property class 5.8	γMs,V	[-]				1,	25			
ırtia	Steel, Property class 8.8	γMs,V	[-]				1,	25			
Pa	Stainless steel A4 and HCR, Property class 50	γMs,V	[-]				2,	38			
	Stainless steel A4 and HCR, Property class 70	γMs,V	[-]			1,	56			-	-

Injection System VMH for concrete

Performance

Characteristic values for threaded rods under tension and shear loads

Annex C1

Table C2: Characteristic values of **tension loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Threaded rod					М8	M10	M12	M16	M20	M24	M27	M30
Steel failure				·								
		N	Rk,s	[kN]				see Ta	ıble C1			
Characteristic tension res	sistance	N _{Rk,}	s,C1	[kN]		1,0 • N _{Rk,s}						
		N _{Rk,}	s C2	[kN]	NF	PD	1,0 •	No Pe	rforman	ice Dete	rmined	(NPD)
Partial factor				[-]			$N_{Rk,s}$	see Ta				
Combined pull-out and	concrete failure		/ls,N	- []				300 10	ibic O1			
Characteristic bond res		ked con	cret	e C20/25								
Temperature range I: 80°C / 50°C				[N/mm²]	17	17	16	15	14	13	13	13
Temperature range II: 120°C / 72°C		τ _{Ri}	c,ucr	[N/mm²]	15	14	14	13	12	12	11	11
Temperature range III: 160°C / 100°C		τ_{R}	k,ucr	[N/mm²]	12	12	11	10	9,5	9,0	9,0	9,0
Characteristic bond res	sistance in cracked	d concre	te C	20/25								
Temperature range I:	1	$\tau_{Rk,cr} = \tau_{Rl}$	k,C1	[N/mm²]	6,5	7,0	7,5	8,5	8,5	8,5	8,5	8,5
80°C / 50°C		τ_{R}	k,C2	[N/mm²]	NF	PD	3,6	No Pe	rforman	ice Dete	rmined	(NPD
Temperature range II:	_1			[N/mm²]	5,5	6,0	6,5	7,5	7,5	7,5	7,5	7,5
120°C / 72°C				[N/mm²]	NF	PD	3,1 No Performance Dete			ice Dete	rmined	(NPD
Temperature range III:		τ _{Rk,C2}		[N/mm ²]	5,0	5,5	6,0	6,5	6,5	6,5	6,5	6,5
160°C / 100°C				[N/mm ²]	NF	PD	2,5 No Performance Determined (N				(NPD)	
				C25/30					02			
				C30/37	1,04							
Increasing factors for cor	ncrete		Ψc	C35/45				1,0				
g			*	C40/50					80			
				C45/55					09			
				C50/60				1,	10			
Factor according to	uncracked conci	rete			10,1							
CEN/TS1992-4-5	cracked conci	rete	k ₈	[-]				7	,2			
Concrete cone failure												
Factor according to	uncracked conci	rete	k _{ucr}	[-]				10),1			
CEN/TS1992-4-5	cracked conci	rete	k _{cr}	[-]				7	,2			
Splitting failure												
	h/h _{ef} ≥	2,0						1,0	h _{ef}			
Edge distance	2,0> h/h _{ef} >		cr,sp	[mm]			2	* h _{ef} (2,	5 – h / h	ef)		
	h/h _{ef} ≤	h/h _{ef} ≤ 1,3						2,4	h _{ef}			
Spacing		S	cr,sp	[mm]				2 c	cr,sp			
Installation factor Compressed air cleanir	ng	$\gamma_2 = \gamma$	∤inst	[-]		1,0 (1,2) ¹⁾			1	,2	
Installation factor Manual cleaning	•	$\gamma_2 = \gamma$	ỹinst	[-]		1,	,2					

¹⁾ Value in brackets for cracked concrete

Injection System VMH for concrete	
Performance Characteristic values of tension loads for threaded rods	Annex C2

Table C3: Characteristic values of **shear loads** for **threaded rods** under static, quasi-static action and seismic action C1 + C2

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm												
	$V_{Rk,s}$	[kN]	see Table C1									
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]				0,70	• V _{Rk,s}					
	$V_{\text{Rk,s,C2}}$	[kN]	NF	PD	0,80 • V _{Rk,s}	No	Performa	nce Dete	rmined (N	IPD)		
Partial factor	γ _{Ms,V}	[-]				see Ta	able C1					
Steel failure with lever arm												
	$M^0_{\text{Rk},s}$	[Nm]				see Ta	able C1					
Characteristic bending moment	M ⁰ _{Rk,s,C1}	[Nm]	No Performance Determined (NPD)									
	M ⁰ _{Rk,s,C2}	[Nm]			No Pend	ormance	Determine	ea (NPD)				
Partial factor	γ̃Ms,∨	[-]				see Ta	able C1					
Concrete pry-out failure												
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]	2,0									
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0									
Concrete edge failure												
Effective length of anchor	I _f	[mm]				I _f = min(h	l _{ef} ; 8 d _{nom})					
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]			•	1	,0	•	•	•		

Injection System VMH for concrete	
Performance Characteristic values of shear loads for threaded rods	Annex C3

Table C4: Characteristic values of **tension loads** for **internally threaded anchor rod** under static, quasi-static action

under	static, quasi-static	actic	on								
Internally threaded and	hor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Steel failure 1)											
Characteristic tension res	istance,	N _{Rk,s}	[kN]	10	18	29	42	79	123		
Steel, strength class 5.8		TTRK,S						, ,			
Partial factor		γMs,N	[-]		I	1,	,5				
Characteristic tension res Steel, strength class 8.8	sistance,	$N_{Rk,s}$	[kN]	16	27	46	67	121	196		
Partial factor		γMs,N	[-]			1.	,5				
Characteristic tension res	istance.								4 0 4 3)		
Stainless steel A4 / HCR,		$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ³⁾		
Partial factor		γMs,N	[-]			1,87			2,86		
Combined pull-out and											
Characteristic bond res	istance in <u>uncracked</u> o	concre	te C20/25								
Temperature range I: 80°C / 50°C		τ _{Rk,ucr}	[N/mm ²]	17	16	15	14	13	13		
Temperature range II: 120°C / 72°C		$ au_{Rk,ucr}$	[N/mm ²]	14	14	13	12	12	11		
Temperature range III: 160°C / 100°C		$\tau_{Rk,ucr}$	[N/mm ²]	12	11	10	9,5	9,0	9,0		
Characteristic bond res	istance in <u>cracked</u> cor	icrete (C20/25								
Temperature range I: 80°C / 50°C		τ _{Rk,cr}	[N/mm²]	7,0	7,5	8,5	8,5	8,5	8,5		
Temperature range II: 120°C / 72°C		τ _{Rk,cr}	[N/mm²]	6,0	6,5	7,5	7,5	7,5	7,5		
Temperature range III: 160°C / 100°C		τ _{Rk,cr}	[N/mm²]	5,5	6,0	6,5	6,5	6,5	6,5		
			C25/30		1,02						
			C30/37			1,	04				
Increasing factors for con	croto	l ,,,	C35/45		1,07						
lincreasing factors for con	Ciele	Ψc	C40/50			1,	08				
			C45/55				09				
			C50/60			1,	10				
Factor according to	uncracked concrete	, L	r 1								
CEN/TS1992-4-5	cracked concrete	k ₈	[-]			7	,2				
Concrete cone failure											
Factor according to	uncracked concrete	k _{ucr}	[-]			10),1				
CEN/TS1992-4-5	cracked concrete	k _{cr}	[-]			7	,2				
Splitting failure											
, ,	h/h _{ef} ≥ 2,0					1.0	h _{ef}				
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]			2 * h _{ef} (2,					
	h/h _{ef} ≤ 1,3	- 01,00					h _{ef}				
Spacing		S _{cr,sp}	[mm]				cr,sp				
Installation factor Compressed air cleanin	ıg γ	$_2 = \gamma_{\text{inst}}$	[-]		1,0 (1,2)2)			1,2			
Installation factor Manual cleaning		$_2 = \gamma_{\text{inst}}$	[-]		1,2			-			
1) Fastening screws or thread	ed rods (incl. nut and wash	er) mus	t comply with	the approi	oriate mate	rial and prop	erty class o	of the interna	ally		

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Performance Characteristic values of tension loads for internally threaded anchor rod Annex C4

²⁾ Value in brackets for cracked concrete

³⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Table C5: Characteristic values of shear loads for internally threaded anchor rod under static and quasi-static action

Internally threaded anchor rod		IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel failure without lever arm1)								
Characteristic shear resistance Steel, strength class 5.8	[kN]	5	9	15	21	39	61	
Partial factor YMs.V	[-]			1,	25			
Characteristic shear resistance Steel, strength class 8.8	[kN]	8	14	23	34	60	98	
Partial factor YMs.V	[-]			1,	25			
Characteristic shear resistance Stainless steel A4 / HCR, V _{Rk,s} strength class 70	[kN]	7	13	20	30	55	62 ²⁾	
Partial factor γ _{Ms,V}	[-]			1,56		AT	2,38	
Steel failure with lever arm1)								
Characteristic bending moment, Steel, strength class 5.8	[Nm]	8	19	37	66	167	325	
Partial factor Y _{Ms.V}	[-]			1,	25			
Characteristic bending moment, Steel, strength class 8.8 M ⁰ _{Rk,s}	[Nm]	12	30	60	105	267	519	
Partial factor γ _{Ms.ν}	[-]			1,	25			
Characteristic bending moment, Stainless steel A4 / HCR, ${\rm M^0}_{\rm Rk,s}$ strength class 70	[Nm]	11	26	53	92	234	643 ²⁾	
Partial factor y _{Ms,V}	[-]			1,56			2,38	
Concrete pry-out failure								
Factor k acc. to TR 029 Factor k_3 acc. to $k_{(3)}$ CEN/TS 1992-4-5	[-]		2,0					
Concrete edge failure								
Effective length of anchor	[mm]			li = min(h	n _{et} ; 8 d _{nom})			
Outside diameter of anchor d _{nom}	[mm]	10	12	16	20	24	30	
Installation factor $\gamma_2 = \gamma_{inst}$	[-]			1	,0			

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Injection System VMH for concrete	
Performance Characteristic values of shear loads for internally threaded anchor rod	Annex C5

²⁾ For VMU-IG M20: Internally threaded rod; strength class 50; Fastening screws or threaded rods (incl. nut and washer); strength class 70

Table C6: Characteristic values of tension loads for rebar under static, quasi-static action and seismic action C1

Reinforcing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension r	esistance N _{Rk,s} =	N _{Rk,s,C1}	[kN]		$A_s \cdot f_{uk}^{1)}$							
Cross section area		As	[mm²]	50								
Partial factor		γMs,N	[-]					1,4 ²⁾				
Combined pull-out an	d concrete failure											
Characteristic bond re	esistance in <u>uncrack</u> e	<u>ed</u> concr	ete C20/25	5								
Temperature range I: 80°C / 50°C		$ au_{Rk,ucr}$	[N/mm²]	14	14	14	14	13	13	13	13	13
Temperature range II: 120°C / 72°C		[N/mm²]	13	12	12	12	12	11	11	11	11	
Temperature range III: 160°C / 100°C		τ _{Rk,ucr}			10	9,5	9,5	9,5	9,0	9,0	9,0	9,0
Characteristic bond re	esistance in <u>cracked</u>	concrete	C20/25									
Temperature range I: 80°C / 50°C	τ _{Rk,c}	$_{r}= au_{Rk,C1}$	[N/mm²]	5,0	5,5	6,0	6,0	7,5	7,5	7,5	7,5	8,0
Temperature range II: 120°C / 72°C	τ _{Rk,c}	[N/mm²]	4,5	5,0	5,0	5,5	6,5	6,5	6,5	6,5	7,0	
Temperature range III: 160°C / 100°C	τ _{Rk,c}	[N/mm²]	4,0	4,5	4,5	5,0	5,5	6,0	6,0	5,5	6,5	
			C25/30					1,02				
			C30/37	1,04								
Increasing factor for co	norete		C35/45	1,07 1,08 1,09								
Increasing factor for co	norete	Ψc	C40/50									
			C45/55									
			C50/60	1,10								
Factor according to	uncracked concrete	l.	r 1					10,1				
CEN/TS1992-4-5	cracked concrete	k ₈	[-]					7,2				
Concrete cone failure												
Factor according to	uncracked concrete	k _{ucr}	[-]					10,1				
CEN/TS1992-4-5	cracked concrete	k _{cr}	[-]					7,2				
Splitting failure												
	h/h _{ef} ≥ 2,0							1,0 h _{ef}				
Edge distance	$2,0 > h/h_{ef} > 1,3$	C _{cr,sp}	[mm]					(2,5 –				
h/h _{ef} ≤ 1,3			[mm]					2,4 h _{ef}				
Spacing					2 c _{cr,sp}							
	Installation factor $\gamma_2 = \gamma_{inst}$ Compressed air cleaning			1,0 (1,2) ³⁾ 1,2								
Installation factor Manual cleaning		$\gamma_2 = \gamma_{inst}$	[-]			1,2					-	

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars 2) in absence of nation regulation 3) Value in brackets for cracked concrete

Injection System VMH for concrete	
Performance Characteristic values of tension loads for rebar	Annex C6

Table C7: Characteristic values of shear loads for rebar under static, quasi-static action and seismic action C1

Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance	$V_{Rk,s}$	[kN]	0,50 • A _s • f _{uk} ¹⁾									
Characteristic shear resistance	$V_{Rk,s,C1}$	[kN]	$0.37 \cdot A_s \cdot f_{uk}^{1)}$									
Cross section area	A_s	[mm²]	50	79	113	154	201	314	491	616	804	
Partial factor	γ _{Ms,V}	[-]	1,5 ²⁾									
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]	0,8									
Steel failure with lever arm												
Characteristic handing mannet	$M^0_{Rk,s}$	[Nm]				1,2	? ⋅ W _{el} ⋅ f	1) uk				
Characteristic bending moment	$M^0_{Rk,s,C1}$	[Nm]	No Performance Determined (NPD)									
Elastic section modulus	W_{el}	[mm³]	50	98	170	269	402	785	1534	2155	3217	
Partial factor	γMs,∨	[-]					1,5 ²⁾					
Concrete pry-out failure												
Factor k acc. to TR 029 Factor k₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]					2,0					
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0					
Concrete edge failure												
Effective length of rebar	I _f	[mm]	$I_{f} = min(h_{ef}; 8 d_{nom})$									
Outside diameter of rebar	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32	
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0					

 $^{^{1)}}f_{\text{uk}}\,\text{shall}$ be taken from the specifications of reinforcing bars $^{2)}$ in absence of nation regulation

Injection System VMH for concrete	
Performance Characteristic values of shear loads for rebar	Annex C7

Table C8:	Displacements under tension loads ¹⁾ (threaded rod)
Table C8:	Displacements under tension loads " (threaded roo	l

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete C	20/25 under	static and qua	si-static a	action						
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,031	0,032	0,034	0,037	0,039	0,042	0,044	0,046
80°C / 50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,040	0,042	0,044	0,047	0,051	0,054	0,057	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,038	0,041	0,044	0,046	0,048
120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,049	0,053	0,056	0,059	0,062
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,142	0,153	0,163	0,171	0,179
160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,146	0,157	0,168	0,176	0,184
Cracked concrete C20	/25 under st	atic and quasi-	static act	ion						
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,081	0,083	0,085	0,090	0,095	0,099	0,103	0,106
80°C / 50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,116	0,122	0,128	0,133	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,093	0,098	0,103	0,107	0,110
120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,121	0,127	0,133	0,138	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,349	0,367	0,385	0,399	0,412
160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,358	0,377	0,396	0,410	0,424
Cracked concrete C20	/25 under se	eismic action (C	2)							
All $\delta_{N,sei}$	s (DLS) -factor	[mm/(N/mm²)]	/NIF	(1155)		No Doutewas and Determined (NE			BD)	
temperature ranges $\delta_{N,sei}$	s (ULS) -factor	[mm/(N/mm²)]	(NPD)		0,140	No Performance Determined (NPD)				FD)

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{- factor } \cdot \tau; \\ \delta_{\text{N,seis}(\text{DLS})} = \delta_{\text{N,seis}(\text{DLS})}\text{- factor } \cdot \tau; \\ \tau\text{: acting bond stress for tension}$

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{- factor } \cdot \tau; \qquad \qquad \delta_{N,seis(ULS)} = \delta_{N,seis(ULS)} \text{-factor } \cdot \tau;$

Table C9: Displacements under shear load (threaded rod)

Threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30		
Uncracked and cracked concrete C20/25 under static and quasi-static action												
All tomporature rea	~~~	δ _{v0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
All temperature ranges	ges -	$\delta_{V_{\infty}}$ -factor [mm/(kN)]		0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	
Cracked concrete	C20/2	25 under se	ismic action (C	2)								
All $\delta_{V,seis(DLS)}$ -factor [mm/(kN)]		(1155)		0,27	N D (DD)				
temperature ranges $\delta_{V,seis}$		(ULS) -factor	[mm/(kN)]	(NPD)		0,27	No Performance Determined (NPD)					

¹⁾ Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor} \quad \text{V}; \qquad \qquad \delta_{\text{V,seis}(\text{DLS})}\text{- factor} \quad \text{V}; \qquad \qquad \text{V: acting shear load}$

 $\delta_{V,\text{seis(ULS)}} = \delta_{V,\text{seis(ULS)}} - \text{factor} \quad V; \\ \delta_{V,\text{seis(ULS)}} = \delta_{V,\text{seis(ULS)}} - \text{factor} \quad V;$

Injection System VMH for concrete

Performance

Displacements (threaded rod)

Annex C8

Table C10: Displacements under tension load¹⁾ (internally threaded anchor rod)

Internally threaded anch	nor rod		IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20
Uncracked concrete C2	0/25 under s	tatic and quasi-	static action	on				
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,032	0,034	0,037	0,039	0,042	0,046
80°C / 50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,042	0,044	0,047	0,051	0,054	0,060
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,034	0,035	0,038	0,041	0,044	0,048
120°C / 72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,044	0,045	0,049	0,053	0,056	0,062
Temperature range III: 160°C / 100°C	δ_{N0} -factor	[mm/(N/mm²)]	0,126	0,131	0,142	0,153	0,163	0,179
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,129	0,135	0,146	0,157	0,168	0,184
Cracked concrete C20/2	5 under stat	ic and quasi-st	atic action					
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,083	0,085	0,090	0,095	0,099	0,106
80°C / 50°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,107	0,110	0,116	0,122	0,128	0,137
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,086	0,088	0,093	0,098	0,103	0,110
120°C / 72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,111	0,114	0,121	0,127	0,133	0,143
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,321	0,330	0,349	0,367	0,385	0,412
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,330	0,340	0,358	0,377	0,396	0,424

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$; τ : acting bond stress for tension

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} \text{-factor } \cdot \tau;$

Table C11: Displacements under shear load¹⁾ (internally threaded anchor rod)

Internally threaded ancho	IG-M6	IG-M8	IG-M10	IG-M12	IG-M16	IG-M20					
Uncracked and cracked concrete C20/25 under static and quasi-static action											
All to manage turns represe	δ _{v0} -factor	[mm/(kN)]	0,07	0,06	0,06	0,05	0,04	0,04			
All temperature ranges	δ _{V∞} -factor	[mm/(kN)]	0,10	0,09	0,08	0,08	0,06	0,06			

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor · V;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}\text{-factor} \quad \cdot \ V;$

Injection System VMH for concrete

Performance

Displacements (internally threaded anchor rod)

Annex C9

Table C12: Displacements under tension load (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32				
Uncracked concrete C2	Uncracked concrete C20/25 under static and quasi-static action														
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm ²)]	0,031	0,032	0,034	0,035	0,037	0,039	0,043	0,045	0,048				
80°C / 50°C	$\delta_{N_\infty}\text{-factor}$	[mm/(N/mm²)]	0,040	0,042	0,044	0,045	0,047	0,051	0,055	0,058	0,063				
Temperature range II: 120°C / 72°C	δ_{N0} -factor	[mm/(N/mm²)]	0,032	0,034	0,035	0,036	0,038	0,041	0,045	0,047	0,050				
	δ _{N∞} -factor	[mm/(N/mm²)]	0,042	0,044	0,045	0,047	0,049	0,053	0,057	0,060	0,065				
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,121	0,126	0,131	0,137	0,142	0,153	0,164	0,172	0,186				
160°C / 100°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,124	0,129	0,135	0,141	0,146	0,157	0,169	0,177	0,192				
Cracked concrete C20/2	25 under sta	atic and quasi-s	tatic act	ion											
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,081	0,083	0,085	0,087	0,090	0,095	0,099	0,103	0,108				
80°C / 50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,104	0,107	0,110	0,113	0,116	0,122	0,128	0,133	0,141				
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,084	0,086	0,088	0,090	0,093	0,098	0,103	0,107	0,113				
120°C / 72°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,108	0,111	0,114	0,118	0,121	0,127	0,133	0,138	0,148				
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,312	0,321	0,330	0,340	0,349	0,367	0,385	0,399	0,425				
160°C / 100°C	δ _{N∞} -factor	[mm/(N/mm²)]	0,321	0,330	0,340	0,349	0,358	0,377	0,396	0,410	0,449				

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \cdot \tau;$ τ : acting bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}$ - factor $\cdot \tau$;

Table C13: Displacements under shear load (rebar)

Rebar				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Cracked and uncracked concrete C20/25 under static and quasi-static action											
All temperature ranges -	$\delta_{\text{V0}}\text{-factor}$	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
All temperature ranges -	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor \cdot V; V: acting shear load

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}$ -factor $\cdot V$;

Injection System VMH for concrete

Performance

Displacements (rebar)

Annex C10