

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-11/0415 of 8 December 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	Injection System VMU plus for concrete
Product family to which the construction product belongs	Injection system for use in concrete
Manufacturer	MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND
Manufacturing plant	Werk 1, D Werk 2, D
This European Technical Assessment contains	29 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.
This version replaces	ETA-11/0415 issued on 13 November 2015

European Technical Assessment ETA-11/0415 English translation propaged by DIPt

Page 2 of 29 | 8 December 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 29 | 8 December 2017

Specific Part

1 Technical description of the product

The Injection system VMU plus for concrete is a bonded anchor consisting of a cartridge with injection mortar VMU plus or VMU plus Polar and a steel element. The steel element consist of a threaded rod with washer and hexagon nut in the range of M8 to M30, reinforcing bar in the range of diameter \emptyset 8 to \emptyset 32 mm or internal threaded rod VMU-IG-M6 to VMU-IG-M20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-11/0415

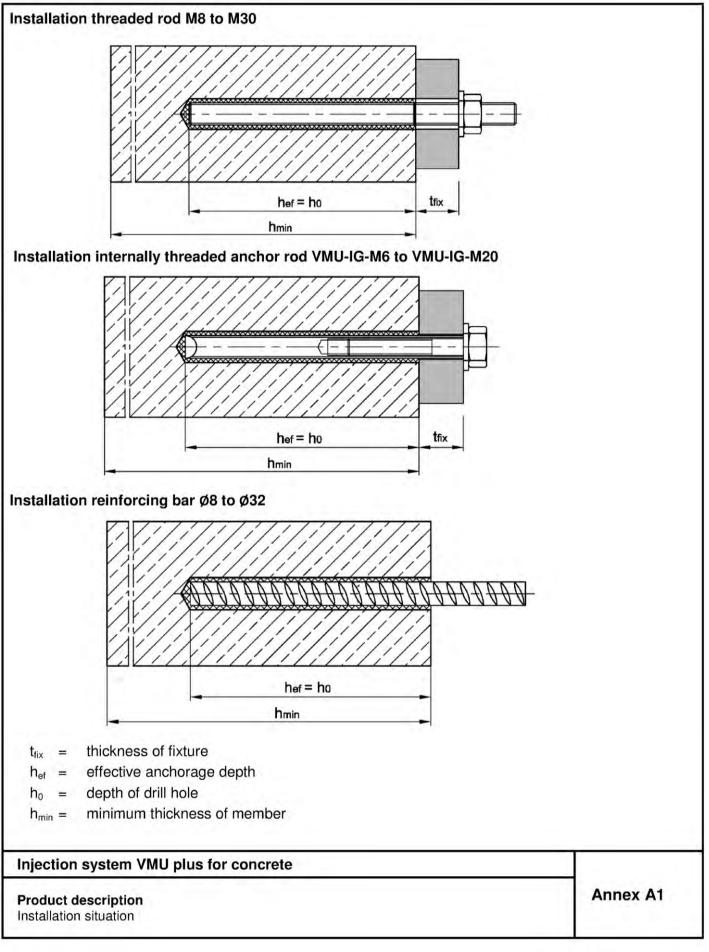
Page 4 of 29 | 8 December 2017

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 8 December 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Baderschneider

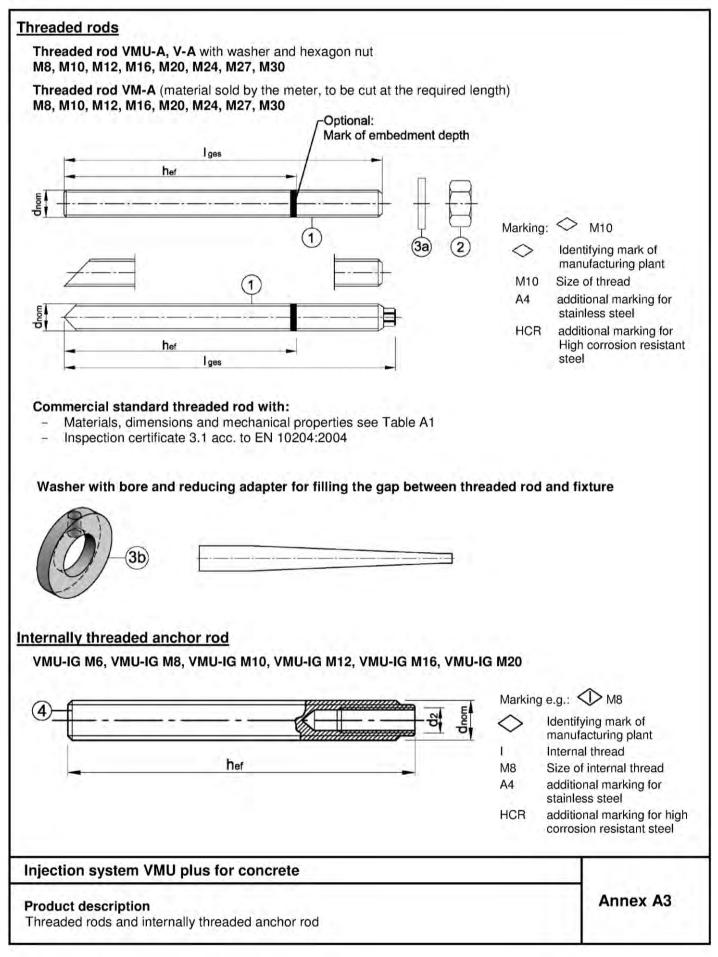


Table A1: Materials

Part	Designation		Material		
Steel,	zinc plated				
			1999 or hot-dip galvanised \geq 40 μ m acc. to EN ISO 1461:2009	,	
EN ISC	<u>) 10684:2004+</u>		zed ≥ 40µm acc. to EN ISO 17668:2016		
	-		f_{uk} 400 N/mm ² ; f_{yk} 240 N/mm ² ; A_5 > 8 % fracture elongation	EN 10087:1998,	
_	Threaded -		$f_{uk} \ge 400 \text{ N/mm}^2$; $f_{yk} \ge 320 \text{ N/mm}^2$; $A_5 > 8 \%$ fracture elongation	EN 10263:2001;	
1	rod -	Property class 5.6 $t_{\rm H} \ge 500$ N/mm ² $t_{\rm H} \ge 300$ N/mm ² A ₅ > 8		commercial standard threaded rod:	
	-			EN ISO 898-1:2013	
		Property class 8.8	$f_{uk}{\approx}$ 800 N/mm²; $f_{yk}{\approx}$ 640 N/mm²; A_5 > 8 % fracture elongation Steel, zinc plated		
2	Hexagon nut		Property class 4 (for class 4.6 or 4.8 rod) Property class 5 (for class 5.6 or 5.8 rod)	EN ISO 898-2:2012	
			Property class 8 (for class 8.8 rod)		
3a	Washer		Steel, zinc plated (e.g.: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)		
3b	Washer with b	ore	Steel, zinc plated		
4	Internally threa	aded anchor rod	Steel, electroplated, $A_5 > 8$ % fracture elongation Property class 5.8 and 8.8	EN 10087:1998	
Stainl	ess steel A4				
			Material 1.4401 / 1.4404 / 1.4571 / 1.4578 / 1.4362 / 1.4062	EN 10088-1:2014	
	Threaded ⁻			EN 10088-1.2014	
1	rod	Property class 50	$ f_{uk} = 500 \text{ N/mm}^2; \ f_{yk} = 210 \text{ N/mm}^2; \ A_5 > 8 \ \% \ fracture \ elongation \\ f_{uk} = 700 \text{ N/mm}^2; \ f_{yk} = 450 \text{ N/mm}^2; \ A_5 > 8 \ \% \ fracture \ elongation $	EN ISO 3506-1:2009	
		Property class 70	M8 to M24		
			Stainless Steel A4		
2 Hexagon nut			Property class 50 (for class 50 rod)	EN ISO 3506-2:2009	
			Property class 70 (for class 70 rod; \leq M24)		
			Stainless Steel A4		
3a	Washer	(e.g.: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)		EN 10088-1: 2014	
3b	Washer with b	ore	Material 1.4401 / 1.4404 / 1.4571 / 1.4362	-	
			Material 1.4401 / 1.4404 / 1.4571 / 1.4362;		
4	Internelly three	threaded anchor rod $A_5 > 8 \%$ fracture elongation		EN 10088 1: 2014	
4		aded anchor rod	Property class 50 (IG-M20)	EN 10088-1: 2014	
		Property class 70 (IG-M8 to IG-M16)			
ligh c	corrosion resis	stant steel HCR			
			Material 1.4529 / 1.4565	EN 10088-1: 2014	
1	Threaded	Property class 50	$f_{uk}{=}$ 500 N/mm²; $f_{yk}{=}$ 210 N/mm²; $A_5 > 8$ % fracture elongation		
	rod	Property class 70	$f_{uk}{=}$ 700 N/mm²; $f_{yk}{=}$ 450 N/mm²; $A_5>8$ % fracture elongation M8 to M24	EN ISO 3506-1: 200	
_		Material 1.4529 / 1.4565		EN 10088-1: 2014	
2	Hexagon nut		Property class 50 ((for class 50 rod) Property class 70 (for class 70 rod; \leq M24)	EN ISO 3506-2:200	
3a	Washer		Material 1.4529 / 1.4565 (e.g.: EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000)	EN 10088-1: 2014	
3b	Washer with b	ore	Material 1.4529 / 1.4565		
4	Internally threa	aded anchor rod	Material 1.4529 / 1.4565, $A_5 > 8$ % fracture elongation Property class 50 (IG-M20) Property class 70 (IG-M8 to IG-M16)	EN 10088-1: 2014	

Injection system VMU plus for concrete

Product description

Materials threaded rods and internally threaded anchor rod

Annex A4

(5	10, Ø 12, Ø 14, Ø 16, Ø 20, Ø 25,	
able		area $f_{R,min}$ according to EN 1992-1-1:2004+AC:2010 in the range 0,05d ≤ h ≤ 0,07d par; h: Rip height of the bar)
Part		Material
Reba	r	÷
	Rebar	Bars and de-coiled rods class B or C
5	EN 1992-1-1:2004+AC:2010, Annex C	f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 f_{uk} = f_{tk} = $k{\boldsymbol{\cdot}} f_{yk}$
5	EN 1992-1-1:2004+AC:2010,	f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k {\mbox{ \bullet}} f_{yk}$
5	EN 1992-1-1:2004+AC:2010,	f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection system VMU plus for concrete

Product description

Product description and materials reinforcing bar

Annex A5

	Anchor rod	Internally threaded anchor rod				
Injection System VMU plus	VMU-A, V-A, VM-A, commercial standard threaded rod		rebar			
Static or quasi-static action	M8 - M30 (zinc plated, A4, HCR)	IG-M6 - IG-M20 (electroplated, A4, HCR)	Ø8 - Ø32			
Seismic action, category C1	M8 - M30 (zinc plated ¹⁾ , A4, HCR)	-	Ø8 - Ø32			
	Reinforced or unreinforced	normal weight concrete a	acc. to EN 206-1:2000			
Base materials	Strength classes acc. to EN 206-1:2000:C20/25 to C50/60					
	Cracke	ed and uncracked concre	ete			
Temperature Range I -40 °C to +40 °C	0 °C max long term temperature +24 °C and max short term temperature +40 °C					
Temperature Range II -40 °C to +80 °C	C max long term temperature +50 °C and max short term temperature +80 °C					
Temperature Range III -40 °C to +120 °C	max long term temperature	+72 °C and max short ter	m temperature +120 °C			

") except hot-dip galvanised

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions
- (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently
 damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular
 aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, IG-M6 to IG-M20, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, IG-M6 to IG-M10, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode or vacuum drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system VMU plus for concrete

Intended Use

Specifications

Table B1:	Installation parameters for threaded rod	
-----------	--	--

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d ₀ =	[mm]	10	12	14	18	24	28	32	35
Effective encharge depth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Effective anchorage depth —	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	9	12	14	18	22	26	30	33
Installation torque	T _{inst} ≤	[Nm]	10	20	40	80	120	160	180	200
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		h _{ef} + 2d ₀					
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	135	150

¹⁾ For larger clearance hole see TR029 section 1.1; for application under seismic loading the diameter of clearance hole in the fixture shall be at maximum d_{nom} + 1mm or alternatively the annular gap between fixture and threaded rod shall be completely filled with mortar

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor rod	IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Inner diameter of threaded rod	$d_2 =$	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod ²⁾	d _{nom} =	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	18	24	28	35
Effective encharge depth	h _{ef,min}	[mm]	60	70	80	90	96	120
Effective anchorage depth —	h _{ef,max}	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture ¹⁾	d _f ≤	[mm]	7	9	12	14	18	22
Installation torque	T _{inst} ≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	l _{iG}	[mm]	8	8	10	12	16	20
Minimum thickness of h _{min} [[mm]		h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀			- 2d ₀	
Minimum spacing	S _{min}	[mm]	50	60	80	100	120	150
Minimum edge distance	C _{min}	[mm]	50	60	80	100	120	150

¹⁾ For larger clearance hole see TR029 section 1.1

²⁾ With metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	$d_0 =$	[mm]	12	14	16	18	20	24	32	35	40
Effective anchorage depth —	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Ellective anchorage depth —	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	\mathbf{h}_{\min}	[mm]	h _{ef} + 30 mm ≥ 100 mm		$h_{ef} + 2d_0$						
Minimum spacing	S _{min}	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	70	80	100	125	140	160

Injection system VMU plus for concrete

Intended Use

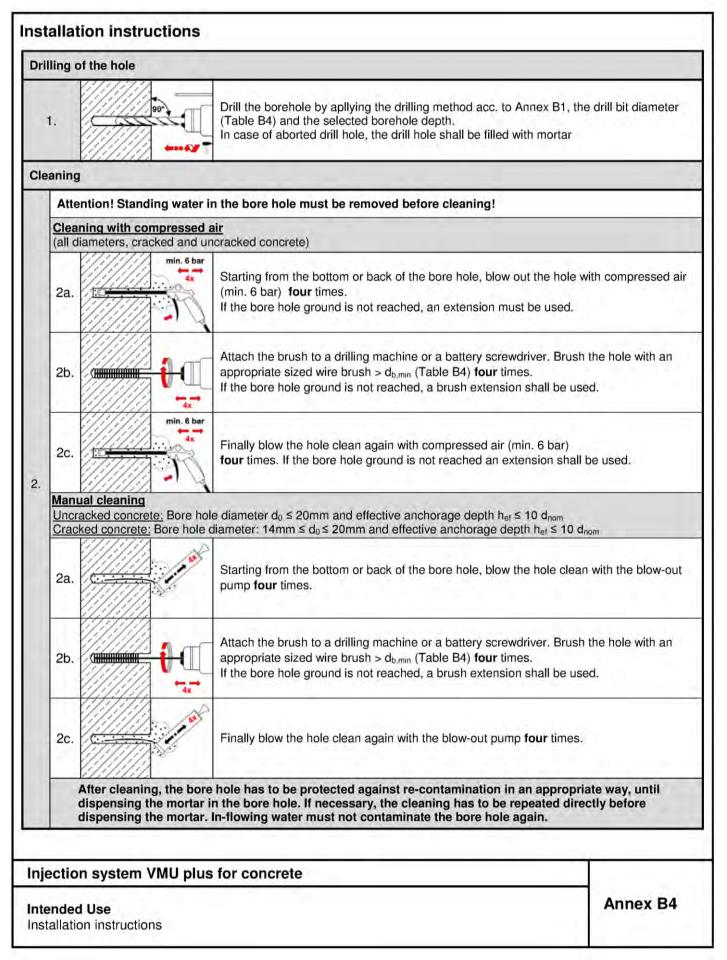
Installation parameters

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit Ø	Brush Ø	min. Brush Ø	Installation dire			Retaining washer		ection and		
[-]	[-]	Ø [mm]	d₀ [mm]	d₅ [mm]	d _{b,min} [mm]	[-]	+	+	1				
M8			10	12	10,5								
M10	VMU-IG M 6	8	12	14	12,5	1							
M12	VMU-IG M 8	10	14	16	14,5	No retaining washer required							
		12	16	18	16,5								
M16	VMU-IG M10	14	18	20	18,5	VM-IA 18			-				
		16	20	22	20,5	VM-IA 20							
M20	VMU-IG M12	20	24	26	24,5	VM-IA 24							
M24	VMU-IG M16		28	30	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all				
M27		25	32	34	32,5	VM-IA 32	2001111	2001111					
M30	VMU-IG M20	28	35	37	35,5	VM-IA 35							
	1	32	40	41,5	40,5	VM-IA 40							

Blow-out pump (volume 750ml) Drill bit diameter (d_0) : 10 mm to 20 mm Anchorage depth (h_{ef}) : \leq 10 d_{nom} for uncracked concrete

Retaining washer for overhead or horizontal installation Drill bit diameter (d₀): 18 mm to 40 mm

Recommended compressed air tool (min 6 bar) All applications


mm vmmmmm

Steel brush Drill bit diameter (d₀): all diameters

Injection system VMU plus for concrete

Intended Use Cleaning and setting tools

stall	ation instructions (continuation)	
3.	A TRADUCT	Attach a supplied static-mixing nozzle to the cartridge and load the cartrid dispensing tool. For every working interruption longer than the recommended working tim Table B6) as well as for new cartridges, a new static-mixer shall be used	e (Table B5 or
4.	her	Before injecting the mortar, mark the required anchorage depth on the fa	stening element.
5.	min.3x =	Prior to dispensing into the drill hole, squeeze out separately a minimum and discard non-uniformly mixed adhesive components until the mortar s grey colour. For tubular film cartridges dismiss a minimum of six full strok	hows a consistent
6a.		Starting from the bottom or back of the cleaned drill hole fill the hole up to two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the pockets. For embedment larger than 190mm an extension nozzle shall be Observe the gel-/ working times given in Table B5 or Table B6.	hole fills to avoid air
6b.		 Retaining washer and mixer nozzle extensions shall be used according to following applications: Horizontal installation (horizontal direction) and ground installation downwards direction): Drill bit-Ø d₀ ≥ 18 mm and embedment de Overhead installation: Drill bit-Ø d₀ ≥ 18 mm 	on (vertical
nserti	ing the anchor		
7.		Push the threaded rod into the hole while turning slightly to ensure prope adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.	r distribution of the
8.		Make sure that the anchor is fully seated up to the full embedment depth mortar is visible at the top of the hole. If these requirements are not main rod immediately and start again with step 6. For overhead installation, the anchor should be fixed (e.g. by wedges).	
9.	X	Allow the adhesive to cure to the specified time prior to applying any load move or load the anchor until it is fully cured (Table B5 or Table B6).	or torque. Do not
10.		Remove excess mortar.	
11.	T _{INST}	The fixture can be mounted after curing time. Apply installation torque Tir Table B1or B2 by using a calibrated torque wrench. Optionally, the annul anchor rod and attachment can be filled with mortar. Therefor replace the washer with bore and plug on reducing adapter on static mixer. Annular gap is completely filled, when excess mortar seeps out.	ar gap between
Injec	tion system VMU	plus for concrete	
Inten	ded Use Ilation instructions (cc		Annex B5

Table B5: Maximum proc	cessing time and minimum curing	g time, VMU plus
Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
-10°C to -6°C	90 min ²⁾	24 h ²⁾
-5°C to -1°C	90 min	14 h
0°C to +4°C	45 min	7 h
+5°C to +9°C	25 min	2 h
+10°C to +19°C	15 min	80 min
+20°C to +29°C	6 min	45 min
+30°C to +34°C	4 min	25 min
+35°C to +39°C	2 min	20 min
+ 40°C	1,5 min	15 min
Cartridge temperature	+ 5°C to	b + 40°C

¹⁾ In wet concrete the curing time must be doubled.
 ²⁾ Cartridge temperature must be at min. + 15°C.

Maximum processing time and minimum curing time, VMU plus Polar Table B6:

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾
- 20°C to -16°C	75 min	24 h
-15°C to -11°C	55 min	16 h
-10°C to -6°C	35 min	10 h
-5°C to -1°C	20 min	5 h
0°C to +4°C	10 min	2,5 h
+5°C to +9°C	6 min	80 min
+10°C	6 min	60 min
Cartridge temperature	- 20°C to	o + 10°C

¹⁾ In wet concrete the curing time must be doubled.

Injection system VMU plus for concrete

Intended Use

Processing time and curing time

Openal of the stand	Thread	ed rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel, Property class 4.6 and 4.8 N _{Rk.8} [KN] 15 23 34 63 98 141 184 22 Steel, Property class 5.6 and 5.8 N _{Rk.8} [KN] 18 29 42 78 122 176 230 28 Steel, Property class 5.6 And HCR, Property class 50 N _{Rk.8} [KN] 18 29 42 79 123 177 230 28 Steel, Property class 5.6 N _{Rk.8} [KN] 18 29 42 79 123 177 230 28 Steel, Property class 5.6 Y _{Mk.N} [-] 2.0 -	Steel fa	ilure										
Open of the second se	Tensio	n load										
Steel, Property class 5.6 and 5.8 N _{Rk.a} [kN] 18 29 42 78 122 176 230 28 Steel, Property class 8.8 N _{Rk.a} [kN] 18 29 42 78 122 176 230 28 Steel, Property class 5.0 N _{Rk.a} [kN] 18 29 42 79 123 177 230 28 Steel, Property class 5.6 M _{Rk.a} [kN] 26 41 59 110 171 247 - - Steel, Property class 5.6 M _{Rk.a} [kN] 26 41 59 110 171 247 - - Steel, Property class 5.6 M _{Rk.a} [kN] 26 41 59 110 171 247 - - Steel, Property class 5.6 M _{Rk.a} [kN] 7 12 17.5 - - Steel, Property class 5.6 M _{Rk.a} [kN] 7 12 17 31 49 71 92 11.5 Steel, Property class 5.6 M Ad. 8 V _{Rk.a} </td <td>e</td> <td>Steel, Property class 4.6 and 4.8</td> <td>N_{Rk.s}</td> <td>[kN]</td> <td>15</td> <td>23</td> <td>34</td> <td>63</td> <td>98</td> <td>141</td> <td>184</td> <td>224</td>	e	Steel, Property class 4.6 and 4.8	N _{Rk.s}	[kN]	15	23	34	63	98	141	184	224
Property class /0 Ymax [-] 2.0 Steel, Property class 4.6 Ymax [-] 2.0 Steel, Property class 5.6 Ymax [-] 2.0 Steel, Property class 5.6 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.0 Ymax [-] 1.5 Steel, Property class 5.0 Ymax [-] 1.5 Steel, Property class 70 Ymax [-] 1.87 - Steel, Property class 5.6 and 5.8 Vmax [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Steel, Roperty class 5.6 Mmx [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Msx [kN] 9 15 21 39 61 <td>stic anc</td> <td></td> <td></td> <td></td> <td>18</td> <td>29</td> <td>42</td> <td>78</td> <td>122</td> <td>176</td> <td>230</td> <td>280</td>	stic anc				18	29	42	78	122	176	230	280
Property class /0 Ymax [-] 2.0 Steel, Property class 4.6 Ymax [-] 2.0 Steel, Property class 5.6 Ymax [-] 2.0 Steel, Property class 5.6 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.0 Ymax [-] 1.5 Steel, Property class 5.0 Ymax [-] 1.5 Steel, Property class 70 Ymax [-] 1.87 - Steel, Property class 5.6 and 5.8 Vmax [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Steel, Roperty class 5.6 Mmx [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Msx [kN] 9 15 21 39 61 <td>teris</td> <td></td> <td></td> <td></td> <td>29</td> <td>46</td> <td>67</td> <td>125</td> <td>196</td> <td>282</td> <td>368</td> <td>449</td>	teris				29	46	67	125	196	282	368	449
Property class /0 Ymax [-] 2.0 Steel, Property class 4.6 Ymax [-] 2.0 Steel, Property class 5.6 Ymax [-] 2.0 Steel, Property class 5.6 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.0 Ymax [-] 1.5 Steel, Property class 5.0 Ymax [-] 1.5 Steel, Property class 70 Ymax [-] 1.87 - Steel, Property class 5.6 and 5.8 Vmax [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Steel, Roperty class 5.6 Mmx [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Msx [kN] 9 15 21 39 61 <td>n re</td> <td>Stainless steel A4 and HCR,</td> <td></td> <td></td> <td></td> <td>20</td> <td>12</td> <td></td> <td>122</td> <td></td> <td>230</td> <td>28.</td>	n re	Stainless steel A4 and HCR,				20	12		122		230	28.
Property class /0 Ymax [-] 2.0 Steel, Property class 4.6 Ymax [-] 2.0 Steel, Property class 5.6 Ymax [-] 2.0 Steel, Property class 5.6 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.8 Ymax [-] 1.5 Steel, Property class 5.0 Ymax [-] 1.5 Steel, Property class 5.0 Ymax [-] 1.5 Steel, Property class 70 Ymax [-] 1.87 - Steel, Property class 5.6 and 5.8 Vmax [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Steel, Roperty class 5.6 Mmx [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Msx [kN] 9 15 21 39 61 <td>Cha Isio</td> <td></td> <td>INRk,s</td> <td>[[[]]]</td> <td>10</td> <td>23</td> <td>42</td> <td>75</td> <td>120</td> <td>1//</td> <td>230</td> <td>20</td>	Cha Isio		INRk,s	[[[]]]	10	23	42	75	120	1//	230	20
Steel, Property class 4.6 YM4,N [·] Z.0 Steel, Property class 4.8 YM4,N [·] 1,5 Steel, Property class 5.6 YM4,N [·] 1,5 Steel, Property class 5.8 YM4,N [·] 1,5 Steel, Property class 5.8 YM4,N [·] 1,5 Stainless steel A4 and HCR, Property class 70 YM4,N [·] 1,5 5 Stainless steel A4 and HCR, Property class 70 YM4,N [·] 1,87 7 1 - - Steel Property class 5.6 and 5.8 Vm4,N [·] 1,87 - - - Steel Property class 5.6 and 5.8 Vm4,N [·] 1,15 - - - Steel Property class 5.6 and 5.8 Vm4,N [·] 1,15 - - - Steel Property class 5.6 and 5.8 Vm4,N [KN] 7 12 17 31 49 71 92 11. Steel Property class 5.6 and 5.8 Vm4,N [KN] 15 23 34	ter		$N_{Rk,s}$	[kN]	26	41	59	110	171	247	-	-
Steel, Property class 5.6 YMs.N [-] 1.5 Steel, Property class 5.6 YMs.N [-] 1.5 Steel, Property class 5.8 YMs.N [-] 1.5 Steel, Property class 5.8 YMs.N [-] 1.5 Steel, Property class 5.6 YMs.N [-] 1.5 Steel, Property class 5.6 YMs.N [-] 1.5 Stainless steel A4 and HCR, Property class 70 YMs.N [-] 1.87 - - Steel, Property class 5.6 and 5.8 YMs.N [-] 1.87 - - Steel Iniure without lever arm Steel, Property class 5.6 and 5.8 Yms.A [KN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Yms.A [KN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Yms.A [KN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 Y			γMs,N	[-]				2	,0			
Steel, Property class 5.6 YMs,N [-] 2.0 Steel, Property class 5.8 YMs,N [-] 1.5 Steel, Property class 5.8 YMs,N [-] 1.5 Steel, Property class 5.0 YMs,N [-] 2.86 Stainless steel A4 and HCR, Property class 50 YMs,N [-] 1.87 - - Shear load Stainless steel A4 and HCR, Property class 5.6 YMs,N [-] 1.87 - - Steel failure without lever arm Steel, Property class 5.6 and 5.8 VRs,a [kN] 7 12 17 31 49 71 92 11. Steel, Property class 5.6 and 5.8 VRs,a [kN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 VRs,a [kN] 9 15 21 39 61 88 115 14 Steel, Property class 70 VRs,a [kN] 9 15 21 39 61 88 115 14		Steel, Property class 4.8	γMs,N					1	,5			
Property class 50 TMs.N [-] 2,86 Stainless steel A4 and HCR, Property class 70 TMs.N [-] 1,87 -	tor	Steel, Property class 5.6	γMs,N					2	,0			
Property class 50 TMs.N [-] 2,86 Stainless steel A4 and HCR, Property class 70 TMs.N [-] 1,87 -	fact	Steel, Property class 5.8	γMs,N	[-]				1	,5			
Property class 50 TMs.N [-] 2,86 Stainless steel A4 and HCR, Property class 70 TMs.N [-] 1,87 -	rtial	Steel, Property class 8.8	γMs,N					1	,5			
Troperty class 70 7/Ms.N [-] 1.87 - - Shear load Steel failure without lever arm Steel, Property class 4.6 and 4.8 VRs.8 [KN] 7 1.87 - - Steel failure without lever arm Steel, Property class 5.6 and 5.8 VRs.8 [KN] 7 1.87 - - Steel, Property class 5.6 and 5.8 VRs.8 [KN] 7 1.88 11.13 Steel, Property class 5.6 and 5.8 VRs.8 [KN] 9 15 23 34 66 188 11.84 22 Steel, Property class 5.6 and 5.8 VRs.8 [KN] 13 20 30 52 133 26 52 133 16 16	Pa		γMs.N					2	86			
Property class 70 TMB,N [-] 1,87 - </td <td></td>												
Steel failure without lever arm Steel, Property class 4.6 and 4.8 VRk.s [KN] 7 12 17 31 49 71 92 11: Steel, Property class 5.6 and 5.8 VRk.s [KN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 and 5.8 VRk.s [KN] 9 15 21 39 61 88 115 14 Steel, Property class 5.6 VRk.s [KN] 9 15 21 39 61 88 115 14 Steel Ad and HCR, Property class 50 VRk.s [KN] 9 15 21 39 61 88 115 14 Steel failure with lever arm Steel failure with lever arm Steel failure with lever arm Steel, Property class 5.6 and 5.8 MRk.s [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 and 5.8 MRk.s [Nm] 19 37<			γMs,N	[-]			1,	87			-	-
Steel, Property class 4.6 and 4.8 V _{Rk.5} [KN] 7 12 17 31 49 71 92 11: Steel, Property class 5.6 and 5.8 V _{Rk.5} [KN] 9 15 21 39 61 88 115 14 Steel, Property class 8.8 V _{Rk.5} [KN] 9 15 21 39 61 88 115 14 Stainless steel A4 and HCR, Property class 70 V _{Rk.5} [KN] 9 15 21 39 61 88 115 14 Stainless steel A4 and HCR, Property class 70 V _{Rk.5} [KN] 9 15 21 39 61 88 115 14 Steel, Property class 70 V _{Rk.5} [KN] 13 20 30 55 86 124 - - Steel, Property class 5.6 and 5.8 M _{Rk.5} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 Add 5.8 M _{Rk.5} [Nm] 30 60 105 266 519 896	Shear l	oad										
Steel, Property class 5.6 and 5.8 V _{Rk,s} [KN] 9 15 21 39 61 88 115 144 Steel, Property class 8.8 V _{Rk,s} [KN] 9 15 21 39 61 88 115 144 Stainless steel A4 and HCR, Property class 50 V _{Rk,s} [KN] 9 15 21 39 61 88 115 144 Stainless steel A4 and HCR, Property class 50 V _{Rk,s} [KN] 9 15 21 39 61 88 115 144 Stainless steel A4 and HCR, Property class 50 V _{Rk,s} [KN] 13 20 30 55 86 124 - - Steel Forperty class 50 V _{Rk,s} [Nm] 15 30 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 M _{Rk,s} <td>Steel fa</td> <td>ilure <u>without</u> lever arm</td> <td></td>	Steel fa	ilure <u>without</u> lever arm										
Property class 70 VRk,s [NN] 13 20 30 53 66 124 1 Steel failure with lever arm Steel failure with lever arm Steel, Property class 4.6 and 4.8 M _{Rk,s} [Nm] 15 30 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 Add HCR, Property class 50 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 7.0 M _{Rk,s} [Nm] 26 52 92 232 454 784 - Steel, Property class 4.6 $\gamma_{Ms,v}$ [-] 1,25 1,25 1,25 1,25 1,25 1,25 <td>¢)</td> <td>Steel, Property class 4.6 and 4.8</td> <td>$V_{Rk,s}$</td> <td>[kN]</td> <td>7</td> <td>12</td> <td>17</td> <td>31</td> <td>49</td> <td>71</td> <td>92</td> <td>11:</td>	¢)	Steel, Property class 4.6 and 4.8	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	11:
Property class 70 VRk,s [NN] 13 20 30 53 66 124 1 Steel failure with lever arm Steel failure with lever arm Steel, Property class 4.6 and 4.8 M _{Rk,s} [Nm] 15 30 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 Add HCR, Property class 50 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 7.0 M _{Rk,s} [Nm] 26 52 92 232 454 784 - Steel, Property class 4.6 $\gamma_{Ms,v}$ [-] 1,25 1,25 1,25 1,25 1,25 1,25 <td>stic ance</td> <td>Steel, Property class 5.6 and 5.8</td> <td>$V_{Rk,s}$</td> <td>[kN]</td> <td>9</td> <td>15</td> <td>21</td> <td>39</td> <td>61</td> <td>88</td> <td>115</td> <td>14</td>	stic ance	Steel, Property class 5.6 and 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	14
Property class 70 VRk,s [NN] 13 20 30 53 66 124 1 Steel failure with lever arm Steel failure with lever arm Steel, Property class 4.6 and 4.8 M _{Rk,s} [Nm] 15 30 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 Add HCR, Property class 50 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 7.0 M _{Rk,s} [Nm] 26 52 92 232 454 784 - Steel, Property class 4.6 $\gamma_{Ms,v}$ [-] 1,25 1,25 1,25 1,25 1,25 1,25 <td>teris sista</td> <td>Steel, Property class 8.8</td> <td>$V_{Rk,s}$</td> <td>[kN]</td> <td>15</td> <td>23</td> <td>34</td> <td>63</td> <td>98</td> <td>141</td> <td>184</td> <td>224</td>	teris sista	Steel, Property class 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Property class 70 VRk,s [NN] 13 20 30 53 66 124 1 Steel failure with lever arm Steel failure with lever arm Steel, Property class 4.6 and 4.8 M _{Rk,s} [Nm] 15 30 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 Add HCR, Property class 50 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 7.0 M _{Rk,s} [Nm] 26 52 92 232 454 784 - Steel, Property class 4.6 $\gamma_{Ms,v}$ [-] 1,25 1,25 1,25 1,25 1,25 1,25 <td>charac ear re</td> <td>Property class 50</td> <td>$V_{Rk,s}$</td> <td>[kN]</td> <td>9</td> <td>15</td> <td>21</td> <td>39</td> <td>61</td> <td>88</td> <td>115</td> <td>14(</td>	charac ear re	Property class 50	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	14(
Steel, Property class 4.6 and 4.8 M _{Rk,s} [Nm] 15 30 52 133 260 449 666 90 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 8.8 M _{Rk,s} [Nm] 30 60 105 266 519 896 1333 179 Stainless steel A4 and HCR, Property class 50 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 70 M _{Rk,s} [Nm] 26 52 92 232 454 784 - - Steel, Property class 4.6 Y _{Ms,V} [-] 1,25 - - - - - - - - - - - <t< td=""><td>She</td><td></td><td>$V_{Rk,s}$</td><td>[kN]</td><td>13</td><td>20</td><td>30</td><td>55</td><td>86</td><td>124</td><td>-</td><td>-</td></t<>	She		$V_{Rk,s}$	[kN]	13	20	30	55	86	124	-	-
Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 19 37 65 166 324 560 833 112 Steel, Property class 5.6 and 5.8 M _{Rk,s} [Nm] 30 60 105 266 519 896 1333 179 Steel, Property class 5.0 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 50 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 70 M _{Rk,s} [Nm] 26 52 92 232 454 784 - - Steel, Property class 4.6 Y _{Ms,V} [-] 1,67 1,25 -	Steel fa	ilure <u>with</u> lever arm										
By Event Steel, Property class 8.8 M _{Rk,s} [Nm] 30 60 105 266 519 896 1333 179 Stainless steel A4 and HCR, Property class 50 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 70 M _{Rk,s} [Nm] 26 52 92 232 454 784 - - Steel, Property class 4.6 YMs,V [-] 1,67 1,25 - <td>t</td> <td>Steel, Property class 4.6 and 4.8</td> <td>$M_{Rk,s}$</td> <td>[Nm]</td> <td>15</td> <td>30</td> <td>52</td> <td>133</td> <td>260</td> <td>449</td> <td>666</td> <td>900</td>	t	Steel, Property class 4.6 and 4.8	$M_{Rk,s}$	[Nm]	15	30	52	133	260	449	666	900
By Event Steel, Property class 8.8 M _{Rk,s} [Nm] 30 60 105 266 519 896 1333 179 Stainless steel A4 and HCR, Property class 50 M _{Rk,s} [Nm] 19 37 66 167 325 561 832 112 Stainless steel A4 and HCR, Property class 70 M _{Rk,s} [Nm] 26 52 92 232 454 784 - - Steel, Property class 4.6 YMs,V [-] 1,67 1,25 - <td>stic</td> <td>Steel, Property class 5.6 and 5.8</td> <td>$M_{Rk,s}$</td> <td>[Nm]</td> <td>19</td> <td>37</td> <td>65</td> <td>166</td> <td>324</td> <td>560</td> <td>833</td> <td>112</td>	stic	Steel, Property class 5.6 and 5.8	$M_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	112
Stainless steel A4 and HCR, Property class 70 M _{Rk,s} [Nm] 26 52 92 232 454 784 - - Steel, Property class 70 M _{Rk,s} [Nm] 26 52 92 232 454 784 - - Steel, Property class 4.6 $\gamma_{Ms,V}$ [-] 1,67 -	cteri mo		$M_{Rk,s}$	[Nm]	30	60	105	266	519	896	1333	179
Stainless steel A4 and HCR, Property class 70 M _{Rk,s} [Nm] 26 52 92 232 454 784 - - Steel, Property class 70 M _{Rk,s} [Nm] 26 52 92 232 454 784 - - Steel, Property class 4.6 $\gamma_{Ms,V}$ [-] 1,67 -	ara(Jing		M _{Rk.s}	[Nm]	19	37	66	167	325	561	832	112
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ch bend	Stainless steel A4 and HCR,	M _{Rk,s}	[Nm]	26	52	92	232	454	784	-	-
Steel, Property class 4.8 $\gamma_{Ms,V}$ [-]1,25Steel, Property class 5.6 $\gamma_{Ms,V}$ [-]1,67Steel, Property class 5.8 $\gamma_{Ms,V}$ [-]1,25Steel, Property class 8.8 $\gamma_{Ms,V}$ [-]1,25Stainless steel A4 and HCR, Property class 50 $\gamma_{Ms,V}$ [-]2,38Stainless steel A4 and HCR, Property class 50 $\gamma_{Ms,V}$ [-]1.56			γMs.V	[-]				1,	67			
Steel, Property class 5.6 $\gamma_{Ms,V}$ [-]1,67Steel, Property class 5.8 $\gamma_{Ms,V}$ [-]1,25Steel, Property class 8.8 $\gamma_{Ms,V}$ [-]1,25Stainless steel A4 and HCR, Property class 50 $\gamma_{Ms,V}$ [-]2,38Stainless steel A4 and HCR, Property class 50 $\gamma_{Ms,V}$ [-]1,67								1,	25			
Steel, Property class 5.8 $\gamma_{Ms,V}$ [-]1,25Steel, Property class 8.8 $\gamma_{Ms,V}$ [-]1,25Stainless steel A4 and HCR, Property class 50 $\gamma_{Ms,V}$ [-]2,38Stainless steel A4 and HCR, Property class 50 $\gamma_{Ms,V}$ [-]2,38	or											
Property class 50 γ _{Ms,V} [-] 2,38 Stainless steel A4 and HCR, 1.56 1.56	fact							-				
Property class 50 γ _{Ms,V} [-] 2,38 Stainless steel A4 and HCR, 1.56 1.56	tial							-				
Stainless steel A4 and HCR,	Pai	Stainless steel A4 and HCR,						-				
		Stainless steel A4 and HCR,	γMs,V	[-]			1,	56			-	-

Performance

Characteristic steel resistances for threaded rods under tension and shear loads

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30	
Steel failure												
Characteristic tension res	istance	N _{Rk,s}	[kN]				see ta	ble C1				
Combined pull-out and	concrete cone fa	ailure										
Characteristic bond resist	tance in cracked o	concrete C2	0/25							-		
Temperature range I: 40°C/24°C	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5	
40 0/24 0	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	no pe	rforman (NF	ce deter PD)	minec	
Temperature range II: 80°C/50°C	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5	
80°C/50°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	2,5	3,0	4,0	4,0	no pe	rforman (NF	ce deter PD)	minec	
Temperature range III:	dry and wet concrete	τ _{Rk,cr}	[N/mm ²]	2,0	2,5	3,0	3,0	3,0	3,0	3,5	3,5	
120°C/72°C	inperature range in.			2,0	2,5	3,0	3,0	no pe	rforman (NF		mineo	
			C25/30				. 1,	1,02 (NPD)				
			C30/37				1,	04				
Increasing factor for $\tau_{Rk,cr}$		Ψc	C35/45					07				
0			C40/50					08				
			C45/55					09				
Factor according to CEN	TS 1002-1-5	k ₈	C50/60 [-]					10 ,2				
Concrete cone failure	10 1332-4-5	18	[[-]				,	,				
Factor according to CEN/	TS 1992-4-5	k _{cr}	[-]				7	,2				
Edge distance	10 1002 4 0	C _{cr,N}	[mm]					,∠ 5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					h _{ef}				
Installation factor			[-]	1,0			,-	1,2				
(dry and wet concrete) Installation factor		$\gamma_2 = \gamma_{inst}$		1,0					rforman	on datar	miner	
(flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1	,4		no pe		PD)	mine	

Injection system VMU plus for concrete

Performance

Characteristic values for threaded rods under tension loads in cracked concrete

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30		
Steel failure													
Characteristic tension r	esistance	N _{Rk,s}	[kN]				see ta	ble C1			-		
Combined pull-out an	d concrete cone	failure											
Characteristic bond res			e C20/25				_			_	_		
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	11	10	9		
40°C/24°C	flooded bore hole	TRk.ucr	[N/mm ²]	7,5	8,5	8,5	8,5	no pe	rforman (NF		mined		
Temperature range II:	dry and wet concrete	TRk,ucr	[N/mm ²]	7,5	9	9	9	9	8,5	7,5	6,5		
80°C/50°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	no pe	no performance determin (NPD)				
Temperature range III:	dry and wet concrete	TRk.ucr	[N/mm ²]	5,5	6,5	6,5	6,5	6,5	6,5 6,5 5,5				
120°C/72°C	flooded bore hole	TRk,ucr	[N/mm ²]	4,0	5,0	5,0	5,0	no pe	rforman (NI	ce deter PD)	mined		
			C25/30				1,	02		-			
			C30/37	_			1,	04					
		- Gal 1	C35/45				t,	07					
Increasing factor for TRK	c,ucr	Ψc	C40/50	-			t,	08					
		10.000	C45/55				1.	09					
		1.200	C50/60					10			-		
Factor according to CE	N/TS 1992-4-5	k ₈	[-]	<u></u>			10						
Concrete cone failure													
Factor according to CE	N/TS 1992-4-5	kuer	[-]				10),1					
Edge distance	A she at the	C _{cr} N	[mm]				1,5	het					
Axial distance		S _{cr,N}	[mm]	-			3,0	h _{ef}					
Splitting failure													
Edge distance for	2	Ccr.sp	[mm]			1,0 h _{ef} s	s 2·h _{ei} (2	$(5-\frac{h}{h_{ef}})$	≤ 2,4·h _e	Ċ.			
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp			-		
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1,2	1		- 1		
Installation factor		$\gamma_2 = \gamma_{inst}$	[-]		1	,4	-, 31	no pe	rforman (Nf	ce deter PD)	mined		

Performance

Characteristic values for threaded rods under tension loads in uncracked concrete

Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm	_		-	•			<u>-</u>		<u>_</u>	
Characteristic shear resistance	$V_{Rk,s}$	[kN]				see ta	ble C1			
Ductility factor acc. to CEN/TS 1992-4-5	k ₂	[-]				0	,8			
Steel failure with lever arm		1								
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				see ta	ble C1			
Concrete pry-out failure		•								
Factor k acc. to TR 029 or ≼₃ acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]				2	,0			
Concrete edge failure		-								
Effective length of anchor	lf	[mm]			lf	= min(h	_{ef} ; 8 d _{nor}	n)		
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
nstallation factor	$\gamma_2 = \gamma_{inst}$	[-]				1	,0			

Injection system VMU plus for concrete

Performance Characteristic value for threaded rods under shear loads

	acteristic value gory C1	es for th	readed r	r ods ເ	under s	seism	ic act	ion,			
Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Tension load							-	-			
Steel failure											
Characteristic tension re	esistance	N _{Rk,s,seis}	[kN]			1,0 •	N _{Rk,s}	(see ta	able C1)		
Combined pull-out and	d concrete cone fa	ailure									
Characteristic bond resis	stance in concrete	C20/25 to (C50/60								
Temperature range I:	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	2,5	2,5	3,7	3,7	no pe		ce deterr PD)	mined
Temperature range II:	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	1,6	1,9	2,7	2,7	no pe		ce deterr PD)	mined
Temperature range III:	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	1,3	1,6	2,0	2,0	no pe	rforman (NI	ce deterr PD)	mined
Increasing factor for $\tau_{\text{Rk},}$	seis	Ψc	[-]				1	1,0			
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1,2			
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1,	,4		no pe		ce deterr PD)	mined
Shear load											
Steel failure without le	ver arm										
Characteristic shear res	istance	V _{Rk,s,seis}	[kN]			0,7 · \	V _{Rk,s}	(see tat	ole C1)		
Steel failure with lever	arm										
Characteristic bending n	noment	M ⁰ _{Rk,s,seis}	[Nm]		No	o Perfor	mance [Determir	ied (NPI	D)	
Injection system	/MU plus for c	oncrete								nnex C	<u> </u>
Performance Characteristic values	for threaded roc	ls under s	eismic ac	:tion , c	ategory	y C1				inex c	5

Internally threaded and	chor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M20	
Steel failure 1)										
Characteristic shear res Steel, strength class 5.8		N _{Rk,s}	[kN]	10	18	29	42	79	123	
Partial factor		γ _{мs,N}	[-]			1	,5			
Characteristic shear res Steel, strength class 8.8		N _{Rk,s}	[kN]	16	27	46	67	121	196	
Partial factor		γмs,N	[-]			1	,5			
Characteristic shear res Stainless steel A4 / HCF		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor		γмs,N	[-]			1,87			2,86	
Combined pull-out and	d concrete cone failure)								
Characteristic bond resi	stance in <u>cracked</u> conc	rete C20	/25							
Temperature range I:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	5,0	5,5	5,5	5,5	5,5	6,5	
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	5,5	5,5	no perfoi	mance de (NPD)	terminec	
Temperature range II:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	3,5	4,0	4,0	4,0	4,0 4,0		
80°C/50°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm²]	3,0	4,0	4,0	no perfoi	mance de (NPD)	termined	
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk},\text{cr}}$	[N/mm²]	2,5	3,0	3,0	3,0	3,0	3,5	
120°C/72°C	flooded bore hole	$\tau_{\text{Rk,cr}}$	[N/mm²]	2,5	3,0	3,0	no perfoi	mance de (NPD)	termined	
			C25/30			1,	02			
			C30/37				04			
Increasing factor for τ_{Rk}	cr	Ψc	C35/45				07			
increasing laster for the,		ΨC	C40/50				08			
			C45/55				09			
			C50/60				10			
Factor according to CEN	N/TS 1992-4-5	k ₈	[-]			7	,2			
Concrete cone failure										
Factor according to CEN	N/TS 1992-4-5	k _{cr}	[-]				,2			
Edge distance		C _{cr,N}	[mm]				h _{ef}			
Spacing		S _{cr,N}	[mm]			3,0	h _{ef}			
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]			1	,2	manca	tormine	
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]		1,4		no perio	mance de (NPD)	termine	

Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under tension loads in cracked concrete

Internally threaded and	chor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 2	
Steel failure 1)					-	-				
Characteristic shear res Steel, strength class 5.8		N _{Rk,s}	[kN]	10	18	29	42	79	123	
Partial factor		$\gamma_{Ms,N}$	[-]			1	,5			
Characteristic shear res Steel, strength class 8.8		$N_{Rk,s}$	[kN]	16	27	46	67	121	196	
Partial factor		$\gamma_{Ms,N}$	[-]	1,5						
Characteristic shear res Stainless steel A4 / HCF		$N_{Rk,s}$	[kN]	14	26	41	59	110	124 ²⁾	
Partial factor		γмs,N	[-]			1,87			2,86	
Combined pull-out and	d concrete cone failure)								
Characteristic bond resi	stance in <u>uncracked</u> co	oncrete C	20/25							
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	12	12	12	12	11	9,0	
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,5	no perfoi	rmance de	termine	
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	9,0	9,0	9,0	9,0	8,5	6,5	
80°C/50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	no perfoi	rmance de	termine	
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	6,5	6,5	6,5	6,5 6,5 5,0			
120°C/72°C	flooded bore hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	5,0	5,0	5,0	no perfoi	rmance de	termine	
			C25/30				02			
			C30/37 C35/45				04 07			
Increasing factor for $\tau_{Rk,I}$	ucr	ψ_{c}	C33/45 C40/50			,	08			
			C45/55				09			
			C50/60			1,	10			
Factor according to CEN	V/TS 1992-4-5	k ₈	[-]			10),1			
Concrete cone failure										
Factor according to CEN	V/TS 1992-4-5	k_{ucr}	[-]			10),1			
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}			
Spacing		S _{cr,N}	[mm]			3,0	h _{ef}			
Splitting failure										
	h/h _{ef} ≥ 2,0					1,0	h _{ef}			
Edge distance	2,0> h/h _{ef} > 1,3	C _{cr,sp}	[mm]			2 * h _{ef} (2,	5 – h / h _{ef})			
	h/h _{ef} ≤ 1,3					2,4	h _{ef}			
Spacing		S _{cr,sp}	[mm]			2 c	cr,sp			
Installation factor	$2 = \gamma_{inst}$	[-]			1	,2				
(dry and wet concrete) Installation factor (flooded bore hole)	•	$2 = \gamma_{inst}$	[-]		1,4			rmance de	termine	

Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under tension loads in uncracked concrete

Table C8: Characteristic values for internally threaded anchor rods under shear loads in cracked and uncracked concrete IG-M 16 IG-M 8 IG-M 10 **IG-M 12** Internally threaded anchor rod IG-M 6 IG-M 20 Steel failure without lever arm1) Characteristic shear resistance 5 21 39 VRk,s [kN] 9 15 61 Steel, strength class 5.8 Partial factor [-] 1,25 YMs.V Characteristic shear resistance [kN] 8 14 34 60 98 V_{Rk,s} 23 Steel, strength class 8.8 Partial factor [-] 1,25 YMs.V Characteristic shear resistance 62²⁾ Stainless steel A4 / HCR, [kN] 7 13 20 30 55 V_{Rk,s} strength class 70 Partial factor [-] 1,56 2,38 YMs.V Ductility factor according to k₂ [-] 0,8 CEN/TS 1992-4-5 Steel failure with lever arm¹⁾ Characteristic bending moment, M⁰Rk.s [Nm] 8 19 37 66 167 325 Steel, strength class 5.8 Partial factor [-] 1,25 YMs,V Characteristic bending moment, M⁰Rk,s [Nm] 12 30 60 105 267 519 Steel, strength class 8.8 Partial factor [-] 1.25 YMs.V Characteristic bending moment, 643²⁾ Stainless steel A4 / HCR, M⁰RK.S [Nm] 11 26 53 92 234 strength class 70 Partial factor 1,56 2.38 [-] YMs,V Concrete pry-out failure Factor k acc. to TR 029 or 2,0 [-] k(3) k3 acc. to CEN/TS 1992-4-5 Concrete edge failure Effective length of anchor le [mm] $I_f = min(h_{ef}; 8 d_{nom})$ Outside diameter of anchor [mm] 10 12 16 20 24 30 dnom Installation factor 1.0 [-] $\gamma_2 = \gamma_{inst}$

¹⁾ Fastening screws or threaded rods (incl. nut and washer) must compley with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

²⁾ For VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Injection system VMU plus for concrete

Performance

Characteristic values for internally threaded anchor rods under shear loads

Rebar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure									•			
Characteristic tension re	esistance	N _{Rk,s}	[kN]					A _s ∙ f _{uk} ¹)			
Combined pull-out and	d concrete cor	ne failure										
Characteristic bond resi	stance in crack	ed concret	te C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,5
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	4,0	5,5	5,5	5,5	no per	formanc (NF		minec
Temperature range II:	dry and wet concrete	$\tau_{Rk,cr}$	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,5
80°C/50°C				2,5	3,0	4,0	4,0	4,0	no per	formanc (NF		mined
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,cr}}$	[N/mm²]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,5
120°C/72°C	flooded bore hole	$\tau_{Rk,cr}$	[N/mm²]	2,0	2,5	3,0	3,0	3,0	no per	formanc (NF		mined
			C25/30	1,02								
			C30/37					1,04				
Increasing factors for τ_{R}			C35/45					1,07				
Increasing factors for t _R	k,cr	Ψc	C40/50					1,08				
			C45/55					1,09				
			C50/60					1,10				
Factor acc. to CEN/TS 1	1992-4-5	k ₈	[-]					7,2				
Concrete cone failure												
Factor acc. to CEN/TS 1	1992-4-5	k _{cr}	[-]					7,2				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1	,2			
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]			1,4			no perf	ormanc (NP		mined

)
$$f_{uk} = f_{tk} = k \cdot f_{yk}$$

Injection system VMU plus for concrete

Performance

Characteristic values for rebar under tension loads in cracked concrete

Rebar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension res	sistance	N _{Rk,s}	[kN]				1	A _s • f _{uk}	1)			
Combined pull-out and	concrete cone	failure										
Characteristic bond resis	tance in uncracl	ked concre	ete C20/25			_	_					
Femperature range I:	dry and wet concrete	TRk,ucr	[N/mm²]	10	12	12	12	12	12	11	10	8,5
10°C/24°C	flooded bore hole	TRk,ucr	[N/mm ²]	7,5	8,5	8,5	8,5	8,5			ormance ed (NP	
Femperature range II:	dry and wet concrete	TRk,ucr	[N/mm ²]	7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,0
30°C/50°C	flooded bore hole	TRk,ucr	[N/mm ²]	5,5	6,5	6,5	6,5	6,5			ormanced (NP	
Femperature range III:	dry and wet concrete	TRk,ucr	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	TRk,ucr	[N/mm ²]	4,0	5,0	5,0	5,0	5,0			ormance ed (NP	
			C25/30					1,02				
			C30/37					1,04				
ncreasing factors for τ_{Rk}			C35/45					1,07				
ncreasing factors for tRk.	UCT	Ψc	C40/50					1,08				-
			C45/55					1,09				
		_	C50/60					1,10	-			
Factor acc. to CEN/TS 19	992-4-5	k ₈	[-]					10,1	÷			
Concrete cone failure												
Factor acc. to CEN/TS 19	992-4-5	k _{ucr}	[-]					10,1				
Edge distance		Ccr.N	[mm]					1,5 het	h			
Axial distance		Scr.N	[mm]				_	3,0 het				-
Splitting failure												
Edge distance for		C _{cr,sp}	[mm]			1,0 h	ef≤2·h	er(2,5-	h h _{ef})≤:	2,4-h _{et}		
Axial distance		S _{cr,sp}	[mm]					2 Ccr.sp				
nstallation factor dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1	,2			
nstallation factor flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]			1,4					ormance ed (NP	

Injection system VMU plus for concrete

Performance

Characteristic values for rebar under tension loads in uncracked concrete

Table C11: Characteristic uncracked co		or reb	ar und	ler sh e	ear loa	ads in	crack	ed an	d		
Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm			-								
Characteristic shear resistance	V _{Rk,s}	[kN]				0,5	50 • A _s •	f _{uk} 1)			
Ductility factor according to CEN/TS 1992-4-5	k ₂	[-]					0,8				
Steel failure with lever arm	-	-	-								
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1,2	₂ • W _{el} •	f _{uk} 1)			
Concrete pry-out failure											
Factor k acc. to TR 029 or k_3 acc. to CEN/TS 1992-4-5	k ₍₃₎	[-]					2,0				
Concrete edge failure											
Effective length of anchor	lf	[mm]				l _f = m	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
¹⁾ $f_{uk} = f_{tk} = k \cdot f_{yk}$											

Injection system VMU plus for concrete

Performance

Characteristic values for rebar under shear loads in cracked and uncracked concrete

Table C12: Characteristic values for rebar under seismic action, category C1															
Rebar				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Tension load										-					
Steel failure															
Characteristic tension resistance N _{Rk,s,seis} [kN]					$A_{s} \cdot f_{uk}^{(1)}$										
Combined pull-out and	l concrete cone	e failure													
Characteristic bond resi	stance in concre	te C20/25 t	o C50/60								1				
Temperature range I:	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5			
40°C/24°C	flooded bore hole	τ _{Rk,seis}	[N/mm²]	2,5	2,5	3,7	3,7	3,7			ormance ed (NPI				
Temperature range II:	dry and wet concrete	τ _{Rk,seis}	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1			
80°C/50°C	flooded bore hole	τ _{Rk,seis}	[N/mm ²]	1,6	1,9	2,7	2,7	2,7	no performance determined (NPD)						
Temperature range III:	dry and wet concrete	τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4			
120°C/72°C	flooded bore hole	τ _{Rk,seis}	[N/mm²]	1,3	1,6	2,0	2,0	2,0			ormance ed (NPI				
Increasing factor for $\tau_{Rk,}$	seis	Ψc	[-]					1,0							
Installation factor (dry and wet concrete)		$\gamma_2 = \gamma_{inst}$	[-]	1,0				1	,2						
Installation factor (flooded bore hole)		$\gamma_2 = \gamma_{inst}$	[-]	1,4 no performance d (NPD)								rmined			
Shear load			1							(11	2)				
Steel failure without le	ver arm														
Characteristic shear res	istance	V _{Rk,s,seis}	[kN]	$0,35 \cdot A_{s} \cdot f_{uk}^{(1)}$											
Steel failure with lever	arm														
Characteristic bending r	Characteristic bending moment $M^{0}_{Rk,s,seis}$ [Nm] no performance determined (NPD)														
¹⁾ $f_{uk} = f_{tk} = k \cdot f_{yk}$															
Injection system \	/MU plus for	concrete	e												
Performance Characteristic values for rebar under seismic action , category C1								An	nex C	:12					

Table C13: Displacements under tension loads ¹⁾ (threaded rod and internally threaded anchor rod)												
Threaded rod			M8	M10 IG-M6	M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20		
Uncracked concrete C	20/25											
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049		
	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071		
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
120°C/72°C	$\delta_{N\infty}\text{-factor}$	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Cracked concrete C20/	25											
Temperature range I: δ_{N0} -factor [mm/(N/mm ²)]				90	0,070							
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,1	05	0,105							
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170							
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255		0,245							
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170							
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,2	255			0,3	245				

¹⁾ Calculation of the displacement

 τ : acting bond stress for tension load $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$;

 $\delta_{N\infty} = \delta_{N\infty} \text{-Faktor} \cdot \tau;$

Table C14: Displacements under shear load¹⁾

(threaded rod and internally threaded anchor rod)

Threaded rod			M8	M10 IG-M6	M12 IG-M8	M16 IG- M10	M20 IG-M12	M24 IG-M16	M27	M30 IG-M20
Uncracked concret	e C20/25				-					
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
Cracked concrete C20/25										
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$; V: acting shear load

$$\begin{split} \delta_{V0} &= \delta_{V0} \text{-factor} \quad \cdot \text{ V}; \\ \delta_{V\infty} &= \delta_{V\infty} \text{-factor} \quad \cdot \text{ V}; \end{split}$$

Injection system VMU plus for concrete

Performance

Displacements (threaded rod and internally threaded anchor rod)

Table C15: Displacements under tension load ¹⁾ (rebar)												
Rebar	Rebar				Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Uncracked concrete C		-										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075	
Temperature range II: 80°C/50°C	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126	
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete C20	/25											
Temperature range I:	δ_{N0} -factor	[mm/(N/mm ²)]	0,0	90	0,070							
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,105		0,105							
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,219		0,170							
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,255		0,245							
Temperature range III:	δ_{N0} -factor	[mm/(N/mm ²)]	0,2	219	0,170							
120°C/72°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm ²)]	0,2	255				0,245				

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -Faktor $\cdot \tau$; τ : acting bond stress for tension load $\delta_{N\infty} = \delta_{N\infty} - Faktor \cdot \tau;$

Table C16: Displacements under shear load¹⁾ (rebar)

•				``	,						
Rebar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V\infty}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10

¹⁾ Calculation of the displacement

V: acting shear load
$$\begin{split} \delta_{V0} &= \delta_{V0} \text{-factor} \quad \cdot \text{ V}; \\ \delta_{V\infty} &= \delta_{V\infty} \text{-factor} \quad \cdot \text{ V}; \end{split}$$

Injection system VMU plus for concrete

Performance

Displacements (rebar)